Menu Close

4sin-2-x-sin-2x-3-find-solution-set-on-x-0-2pi-




Question Number 100988 by bobhans last updated on 29/Jun/20
4sin^2 x + sin 2x = 3   find solution set on x∈(0,2π)
4sin2x+sin2x=3findsolutionsetonx(0,2π)
Commented by Dwaipayan Shikari last updated on 29/Jun/20
sin^2 x+2sinxcosx+cos^2 x=3−3sin^2 x+cos^2 x   (sinx+cosx)^2 =4cos^2 x    sinx+cosx=2cosx    sinx=cosx    sinx=sin((π/2)−x)    x=kπ+(−1)^k ((π/2)−x)    2x=kπ+(π/2)      4x=2kπ+π    x=(2k+1)(π/4)  {k∈Z    so solution  x∈[0,2π]  are (π/4),((3π)/4) ,((5π)/4),((7π)/4)  but at  x=((3π)/4)  ,((7π)/4)  are not valid    It has another generic solution x=kπ−((3π)/4)  net set∈{(π/4),(π/2)+tan^(−1) (1/3),((5π)/4),((3π)/2)+tan^(−1) (1/3)}
sin2x+2sinxcosx+cos2x=33sin2x+cos2x(sinx+cosx)2=4cos2xsinx+cosx=2cosxsinx=cosxsinx=sin(π2x)x=kπ+(1)k(π2x)2x=kπ+π24x=2kπ+πx=(2k+1)π4{kZsosolutionx[0,2π]areπ4,3π4,5π4,7π4butatx=3π4,7π4arenotvalidIthasanothergenericsolutionx=kπ3π4netset{π4,π2+tan113,5π4,3π2+tan113}
Answered by MJS last updated on 29/Jun/20
4sin^2  x +sin 2x =3  t=tan x  ((t^2 +2t−3)/(t^2 +1))=0  t_1 =−3 ⇒ x_1 =arctan (1/3) +(n−(1/2))π  t_2 =1 ⇒ x_2 =(π/4)+nπ  0≤x<2π ⇒ x∈{(π/4), (π/2)+arctan (1/3), ((5π)/4), ((3π)/2)+arctan (1/3)}
4sin2x+sin2x=3t=tanxt2+2t3t2+1=0t1=3x1=arctan13+(n12)πt2=1x2=π4+nπ0x<2πx{π4,π2+arctan13,5π4,3π2+arctan13}

Leave a Reply

Your email address will not be published. Required fields are marked *