Menu Close

4sin-2pi-7-sec-pi-14-cot-pi-7-




Question Number 125833 by bramlexs22 last updated on 14/Dec/20
  ((4sin (((2π)/7))+sec ((π/(14))))/(cot ((π/7)))) ?
4sin(2π7)+sec(π14)cot(π7)?
Answered by Dwaipayan Shikari last updated on 14/Dec/20
((4sin((2π)/7)cos(π/(14))sin(π/7)+sin(π/7))/(cos(π/(14))cos(π/7)))=((2(cos(π/7)−cos((3π)/7))cos(π/(14))+sin(π/7))/(cos(π/(14))cos(π/7)))  =((cos(π/(14))−cos((3π)/(14))−cos((5π)/(14))+cos(π/2)+cos((5π)/(14)))/(cos(π/(14))cos(π/7)))      sin(π/7)=cos((5π)/(14))  =((cos(π/(14))−cos((3π)/7))/(cos(π/(14))cos(π/7)))=2(((cos(π/(14))cos(π/7))/(cos(π/(14))cos(π/7))))=2
4sin2π7cosπ14sinπ7+sinπ7cosπ14cosπ7=2(cosπ7cos3π7)cosπ14+sinπ7cosπ14cosπ7=cosπ14cos3π14cos5π14+cosπ2+cos5π14cosπ14cosπ7sinπ7=cos5π14=cosπ14cos3π7cosπ14cosπ7=2(cosπ14cosπ7cosπ14cosπ7)=2
Answered by liberty last updated on 14/Dec/20
let (π/(14))=x then ((4sin 4x+sec x)/(cot 2x))=  ((4sin 4xcos x+1)/(cos x(((cos 2x)/(sin 2x)))))= ((4sin 4xcos xsin 2x+sin 2x)/(cos x cos 2x))   = ((−2(cos 6x−cos 2x)cos  x+sin 2x)/(cos xcos 2x))   = ((2cos 2x cos x−2cos 6xcos x+sin 2x)/(cos xcos 2x))   = ((2cos 2xcos x−cos 7x−cos 5x+sin 2x)/(cos x cos 2x))   [ we know that cos 7x=cos (π/2)=0 ∧cos 5x=cos ((5π)/(14))=sin ((2π)/(14)) ]  thus we get cos 7x−cos 5x+sin 2x = 0  so ((2cos 2x cos x+0)/(cos x cos 2x)) = 2.
letπ14=xthen4sin4x+secxcot2x=4sin4xcosx+1cosx(cos2xsin2x)=4sin4xcosxsin2x+sin2xcosxcos2x=2(cos6xcos2x)cosx+sin2xcosxcos2x=2cos2xcosx2cos6xcosx+sin2xcosxcos2x=2cos2xcosxcos7xcos5x+sin2xcosxcos2x[weknowthatcos7x=cosπ2=0cos5x=cos5π14=sin2π14]thuswegetcos7xcos5x+sin2x=0so2cos2xcosx+0cosxcos2x=2.

Leave a Reply

Your email address will not be published. Required fields are marked *