4x-1-8x-3-x-2-x-4-2x-2-2-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 120102 by benjo_mathlover last updated on 29/Oct/20 Θ=∫4x−1+8x−3x2x4+2x2+2dx Answered by mathmax by abdo last updated on 29/Oct/20 I=∫4x−1+8x−3x2x4+2x2+2dx⇒I=∫4x2+8x5x4+2x2+2dx⇒I=x2=t∫4t+8t52t2+2t+2dt2t=∫2t+4t3t2+2t+2dt=∫2t+4t3(t+1)2+1dt=t+1=sh(t)∫2(sht−1)+4(sht−1)3ch(t)ch(t)dt=∫2sht+2sh3t−3sh2t+3sht−1dt=∫2et−e−t2+2(et−e−t2)3−3(et−e−t2)2+3et−e−t2−1dt=et=u∫u−u−1+218(u−u−1)3−34(u−u−1)2+32(u−u−1)−1duu=8∫u−u−1+2u{(u−u−1)3−6(u−u−1)2+12(u−u−1)−8}du=8∫u−u−1+2u{u3−3u2u−1+3uu−2+u−3−6(u2−2+u−1)+12u−12u−1−8}du=8∫u−u−1+2u{u3−3u+3u−1+u−3−6u2+12−6u−1+12u−12u−1−8}=8∫u−u−1+2u{u3−3u+3u−1+u−3−6u2+12u−18u−1−8}du=8∫u−u−1+2u4−3u2+3+u−2−6u3+12u2−18+8udu=8∫u3−u+2u2u6+9u4+3u2+1−6u5−18u2+8u3du=8∫u3+2u2−uu6−6u5+9u4+8u3−15u2+1durestdecompositonofF(u)=u3+2u2−uu6−6u5+9u4+8u3−15u2+1….becontinued…. Answered by TANMAY PANACEA last updated on 29/Oct/20 ∫4x−1+8x−3x21+(x2+1)2dx4∫x2+2x51+(x2+1)2dxx2+1=tana→2xdx=sec2adadx=sec2ada2−1+tana4∫1+tana(−1+tana)52×seca×sec2ada2−1+tana2∫1+tana(−1+tana)3×secada2∫(sina+cosa)cosa(sina−cosa)3×cos3a×dacosa2∫cosa×sina+cosa(sina−cosa)3daI2=cosa∫sina+cosa(sina−cosa)3−∫[dda(cosa)∫sina+cosa(sina−cosa)3]dalookd(sina−cosa)=cosa+sinaso∫sina+cosa(sina−cosa)3da=∫d(sina−cosa)(sina−cosa)3=1−2(sina−cosa)2I2=cosa×1−2(sina−cosa)2−∫−sina1×1−2(sina−cosa)2daI=cosa×1−(sina−cosa)2−∫sina(sina−cosa)2I=cosa−(sina−cos)2−I★I★=12∫sina+cosa+sina−cosa(sina−cosa)2da12∫d(sina−cosa)(sina−cosa)2+12∫dasina−cosa12×−1(sina−cosa)+12∫2dasin(a−π4)−12(sina−cosa)+12lntan(a2−π8)+cnotetana=1+x2plschkpls< Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: If-sin-3-sin-cos-3-cos-1-show-that-sin-2-2sin-0-Next Next post: Question-185637 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.