Menu Close

4x-1-8x-3-x-2-x-4-2x-2-2-dx-




Question Number 120102 by benjo_mathlover last updated on 29/Oct/20
 Θ = ∫ ((4x^(−1) +8x^(−3) )/(x^2 (√(x^4 +2x^2 +2)))) dx
Θ=4x1+8x3x2x4+2x2+2dx
Answered by mathmax by abdo last updated on 29/Oct/20
I =∫  ((4x^(−1) +8x^(−3) )/(x^2 (√(x^4 +2x^2 +2))))dx ⇒I=∫  ((4x^2 +8)/(x^5 (√(x^4 +2x^2 +2))))dx ⇒  I=_(x^2 =t)     ∫   ((4t+8)/(t^(5/2) (√(t^2 +2t+2))))(dt/(2(√t))) =∫  ((2t+4)/(t^3 (√(t^2 +2t+2))))dt  =∫  ((2t+4)/(t^3 (√((t+1)^2 +1))))dt =_(t+1=sh(t))   ∫  ((2(sht−1)+4)/((sht−1)^3 ch(t)))ch(t)dt  =∫  ((2sht+2)/(sh^3 t−3sh^2 t +3sht −1))dt  =∫   ((2((e^t −e^(−t) )/2)+2)/((((e^t −e^(−t) )/2))^3 −3(((e^t −e^(−t) )/(2  )))^2 +3((e^t −e^(−t) )/2)−1))dt  =_(e^t  =u)     ∫   ((u−u^(−1) +2)/((1/8)(u−u^(−1) )^3 −(3/4)(u−u^(−1) )^2 +(3/2)(u−u^(−1) )−1))(du/u)  =8 ∫ ((u−u^(−1) +2)/(u{  (u−u^(−1) )^3 −6(u−u^(−1) )^2 +12(u−u^(−1) )−8}))du  =8∫   ((u−u^(−1) +2)/(u{ u^3 −3u^2 u^(−1) +3uu^(−2) +u^(−3) −6(u^2 −2+u^(−1) )+12u−12u^(−1) −8}))du  =8 ∫    ((u−u^(−1) +2)/(u{u^3 −3u+3u^(−1) +u^(−3) −6u^2 +12−6u^(−1) +12u−12u^(−1) −8}))  =8∫  ((u−u^(−1) +2)/(u{u^3 −3u+3u^(−1)  +u^(−3) −6u^2 +12u−18u^(−1) −8}))du  =8∫  ((u−u^(−1) +2)/(u^4 −3u^2 +3+u^(−2) −6u^3 +12u^2  −18+8u))du  =8∫   ((u^3 −u+2u^2 )/(u^6 +9u^4  +3u^2  +1−6u^5 −18u^2  +8u^3 ))du  =8∫  ((u^3 +2u^2 −u)/(u^6 −6u^5 +9u^4 +8u^3 −15u^2 +1))du  rest decompositon of  F(u) =((u^3 +2u^2 −u)/(u^6 −6u^5  +9u^4  +8u^3 −15u^2  +1))....be continued....
I=4x1+8x3x2x4+2x2+2dxI=4x2+8x5x4+2x2+2dxI=x2=t4t+8t52t2+2t+2dt2t=2t+4t3t2+2t+2dt=2t+4t3(t+1)2+1dt=t+1=sh(t)2(sht1)+4(sht1)3ch(t)ch(t)dt=2sht+2sh3t3sh2t+3sht1dt=2etet2+2(etet2)33(etet2)2+3etet21dt=et=uuu1+218(uu1)334(uu1)2+32(uu1)1duu=8uu1+2u{(uu1)36(uu1)2+12(uu1)8}du=8uu1+2u{u33u2u1+3uu2+u36(u22+u1)+12u12u18}du=8uu1+2u{u33u+3u1+u36u2+126u1+12u12u18}=8uu1+2u{u33u+3u1+u36u2+12u18u18}du=8uu1+2u43u2+3+u26u3+12u218+8udu=8u3u+2u2u6+9u4+3u2+16u518u2+8u3du=8u3+2u2uu66u5+9u4+8u315u2+1durestdecompositonofF(u)=u3+2u2uu66u5+9u4+8u315u2+1.becontinued.
Answered by TANMAY PANACEA last updated on 29/Oct/20
∫((4x^(−1) +8x^(−3) )/(x^2 (√(1+(x^2 +1)^2 ))))dx  4∫((x^2 +2)/(x^5 (√(1+(x^2 +1)^2 ))))dx  x^2 +1=tana→2xdx=sec^2 ada  dx=((sec^2 ada)/(2(√(−1+tana))))  4∫((1+tana)/((−1+tana)^(5/2) ×seca))×((sec^2 ada)/(2(√(−1+tana))))  2∫((1+tana)/((−1+tana)^3 ))×secada  2∫(((sina+cosa))/(cosa(sina−cosa)^3 ))×cos^3 a×(da/(cosa))  2∫cosa×((sina+cosa)/((sina−cosa)^3 ))da  (I/2)=cosa∫((sina+cosa)/((sina−cosa)^3 ))−∫[(d/da)(cosa)∫((sina+cosa)/((sina−cosa)^3 ))]da  ■■ look  d(sina−cosa)=cosa+sina  so ∫((sina+cosa)/((sina−cosa)^3 ))da=∫((d(sina−cosa))/((sina−cosa)^3 ))  =(1/(−2(sina−cosa)^2 )) ■■  (I/2)=cosa×(1/(−2(sina−cosa)^2 ))−∫((−sina)/1)×(1/(−2(sina−cosa)^2 ))da  I=cosa×(1/(−(sina−cosa)^2 ))−∫((sina)/((sina−cosa)^2 ))  I=((cosa)/(−(sina−cos)^2 ))−I_★   I_★ =(1/2)∫((sina+cosa+sina−cosa)/((sina−cosa)^2 ))da  (1/2)∫((d(sina−cosa))/((sina−cosa)^2 ))+(1/2)∫(da/(sina−cosa))  (1/2)×((−1)/((sina−cosa)))+(1/2)∫(((√2) da)/(sin(a−(π/4))))  ((−1)/(2(sina−cosa)))+(1/( (√2)))lntan((a/2)−(π/8))+c  note tana=1+x^2   pls chk pls  <
4x1+8x3x21+(x2+1)2dx4x2+2x51+(x2+1)2dxx2+1=tana2xdx=sec2adadx=sec2ada21+tana41+tana(1+tana)52×seca×sec2ada21+tana21+tana(1+tana)3×secada2(sina+cosa)cosa(sinacosa)3×cos3a×dacosa2cosa×sina+cosa(sinacosa)3daI2=cosasina+cosa(sinacosa)3[dda(cosa)sina+cosa(sinacosa)3]da◼◼lookd(sinacosa)=cosa+sinasosina+cosa(sinacosa)3da=d(sinacosa)(sinacosa)3=12(sinacosa)2◼◼I2=cosa×12(sinacosa)2sina1×12(sinacosa)2daI=cosa×1(sinacosa)2sina(sinacosa)2I=cosa(sinacos)2II=12sina+cosa+sinacosa(sinacosa)2da12d(sinacosa)(sinacosa)2+12dasinacosa12×1(sinacosa)+122dasin(aπ4)12(sinacosa)+12lntan(a2π8)+cnotetana=1+x2plschkpls<

Leave a Reply

Your email address will not be published. Required fields are marked *