4x-2-3-x-2-x-1-2-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 52649 by Tawa1 last updated on 10/Jan/19 ∫4x2+3(x2+x+1)2dx Commented by maxmathsup by imad last updated on 10/Jan/19 etI=∫4x2+3(x2+x+1)2dx⇒I=∫4(x2+x+1)−4x−1(x2+x+1)2dx=4∫dxx2+x+1−∫4x+1(x2+x+1)2dx=4H−KH=∫dx(x+12)2+34=x+12=32tanθ∫134(1+tan2θ)32(1+tan2θ)dθ=3243∫dθ=23θ+c1=23arctan(2x+13)+c1wehave(1x2+x+1)′=−2x+1(x2+x+1)⇒∫4x+1(x2+x+1)2=2∫2x+12(x2+x+1)2dx=2∫2x+1−12(x2+x+1)2dx=2{−1x2+x+1−12∫dx(x2+x+1)2}=−2x2+x+1−∫dx(x2+x+1)2but∫dx(x2+x+1)2=∫dx((x+12)2+34)2=x+12=32tanθ16932∫1(1+tan2θ)2(1+tan2θ)dθ=839∫dθ1+tan2θ=839∫1+cos(2θ)2dθ=439∫(1+cos(2θ))dθ=439θ+4318sin(2θ)=439arctan(2x+13)+239sin(2arctan(2x+13))+c2⇒I=83arctan(2x+13)+2x2+x+1+439arctan(2x+13)+239sin(2arctan(2x+13))+C Commented by Tawa1 last updated on 10/Jan/19 Godblessyousir Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-all-numbers-gt-1-from-N-which-their-cube-are-lt-18360-Next Next post: factorise-x-4-4- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.