Menu Close

4x-2-3-x-2-x-1-2-dx-




Question Number 52649 by Tawa1 last updated on 10/Jan/19
∫ ((4x^2  + 3)/((x^2  + x + 1)^2 )) dx
4x2+3(x2+x+1)2dx
Commented by maxmathsup by imad last updated on 10/Jan/19
et I =∫  ((4x^2  +3)/((x^2  +x+1)^2 ))dx ⇒ I =∫ ((4(x^2  +x+1)−4x−1)/((x^2  +x+1)^2 ))dx  =4 ∫   (dx/(x^2  +x +1)) −∫   ((4x+1)/((x^2  +x+1)^2 ))dx =4H −K  H =∫   (dx/((x+(1/2))^2  +(3/4))) =_(x+(1/2)=((√3)/2)tanθ)    ∫     (1/((3/4)(1+tan^2 θ))) ((√3)/2) (1+tan^2 θ)dθ  =((√3)/2) (4/3) ∫  dθ =(2/( (√3))) θ +c_1 =(2/( (√3))) arctan(((2x+1)/( (√3)))) +c_1   we have ((1/(x^2  +x+1)))^′ =−((2x+1)/((x^2  +x +1))) ⇒  ∫   ((4x+1)/((x^2  +x+1)^2 )) =2 ∫ ((2x+(1/2))/((x^2  +x+1)^2 ))dx =2 ∫  ((2x+1−(1/2))/((x^2  +x+1)^2 ))dx  =2{−(1/(x^2  +x+1))−(1/2) ∫   (dx/((x^2  +x+1)^2 ))}  =((−2)/(x^2  +x+1)) −∫  (dx/((x^2  +x+1)^2 )) but  ∫  (dx/((x^2  +x+1)^2 )) =∫  (dx/(((x+(1/2))^2  +(3/4))^2 )) =_(x+(1/2)=((√3)/2)tanθ)   ((16)/9)((√3)/2) ∫   (1/((1+tan^2 θ)^2 )) (1+tan^2 θ)dθ  =((8(√3))/9) ∫  (dθ/(1+tan^2 θ)) =((8(√3))/9) ∫ ((1+cos(2θ))/2)dθ =((4(√3))/9) ∫ (1+cos(2θ))dθ  =((4(√3))/9) θ   +((4(√3))/(18)) sin(2θ) =((4(√3))/9) arctan(((2x+1)/( (√3)))) +((2(√3))/9) sin(2arctan(((2x+1)/( (√3)))))+c_2  ⇒  I =(8/( (√3))) arctan(((2x+1)/( (√3)))) +(2/(x^2  +x+1)) +((4(√3))/9) arctan(((2x+1)/( (√3))))+((2(√3))/9) sin(2arctan(((2x+1)/( (√3))))) +C
etI=4x2+3(x2+x+1)2dxI=4(x2+x+1)4x1(x2+x+1)2dx=4dxx2+x+14x+1(x2+x+1)2dx=4HKH=dx(x+12)2+34=x+12=32tanθ134(1+tan2θ)32(1+tan2θ)dθ=3243dθ=23θ+c1=23arctan(2x+13)+c1wehave(1x2+x+1)=2x+1(x2+x+1)4x+1(x2+x+1)2=22x+12(x2+x+1)2dx=22x+112(x2+x+1)2dx=2{1x2+x+112dx(x2+x+1)2}=2x2+x+1dx(x2+x+1)2butdx(x2+x+1)2=dx((x+12)2+34)2=x+12=32tanθ169321(1+tan2θ)2(1+tan2θ)dθ=839dθ1+tan2θ=8391+cos(2θ)2dθ=439(1+cos(2θ))dθ=439θ+4318sin(2θ)=439arctan(2x+13)+239sin(2arctan(2x+13))+c2I=83arctan(2x+13)+2x2+x+1+439arctan(2x+13)+239sin(2arctan(2x+13))+C
Commented by Tawa1 last updated on 10/Jan/19
God bless you sir
Godblessyousir

Leave a Reply

Your email address will not be published. Required fields are marked *