Menu Close

4x-2-4x-2-1-y-4y-2-4y-2-1-z-4z-2-4z-2-1-x-where-x-y-z-0-




Question Number 120110 by benjo_mathlover last updated on 29/Oct/20
 { ((((4x^2 )/(4x^2 +1)) = y)),((((4y^2 )/(4y^2 +1)) = z )),((((4z^2 )/(4z^2 +1)) = x)) :}  where x,y,z ≠ 0
{4x24x2+1=y4y24y2+1=z4z24z2+1=xwherex,y,z0
Answered by bemath last updated on 29/Oct/20
⇒  { (((1/y) = 1+(1/(4x^2 )))),(((1/z) = 1+ (1/(4y^2 )))),(((1/x) = 1+(1/(4z^2 )))) :}  (1+(1/(4x^2 ))−(1/x))+(1+(1/(4y^2 ))−(1/y))+(1+(1/(4z))−(1/z)) = 0  (1−(1/(2x)))^2 +(1−(1/(2y)))^2 + (1−(1/(2z)))^2  = 0  →(1/(2x)) = (1/(2y)) = (1/(2z)) = 1 , (x,y,z) = ((1/2),(1/2),(1/2))
{1y=1+14x21z=1+14y21x=1+14z2(1+14x21x)+(1+14y21y)+(1+14z1z)=0(112x)2+(112y)2+(112z)2=012x=12y=12z=1,(x,y,z)=(12,12,12)
Answered by mindispower last updated on 29/Oct/20
y=f(4x^2 ),f(t)=(t/(t+1)),f′(t)≥0,f increase  x,y,z≥0  z=f0f(4x^2 )  x=fofof(4x^2 ),  fof increase fonction  4x^2 >4y^2 ⇒f(4x^2 )>f(4y^2 )⇒y>z⇒4y^2 >4z^2   ⇒f(4y^2 )>f(4z^2 )⇔z>x  z<y⇒x>y>z>x absurde x<y also⇒x>y  so x=y⇒x=((4x^2 )/(4x^2 +1))⇔x(4x^2 −4x+1)=0  x(2x−1)^2 =0⇔x=0,x=(1/2)  S=(x,y,z)∈{((1/2),(1/2),(1/2))}
y=f(4x2),f(t)=tt+1,f(t)0,fincreasex,y,z0z=f0f(4x2)x=fofof(4x2),fofincreasefonction4x2>4y2f(4x2)>f(4y2)y>z4y2>4z2f(4y2)>f(4z2)z>xz<yx>y>z>xabsurdex<yalsox>ysox=yx=4x24x2+1x(4x24x+1)=0x(2x1)2=0x=0,x=12S=(x,y,z){(12,12,12)}

Leave a Reply

Your email address will not be published. Required fields are marked *