Question Number 128900 by bemath last updated on 11/Jan/21

Answered by liberty last updated on 11/Jan/21

Commented by bramlexs22 last updated on 11/Jan/21

Answered by Olaf last updated on 11/Jan/21
![F(x) = ∫((4x+5)/((x+2)(x+3)(x+4)(x+5)+1))dx Let u = x+(7/2) F(x) = ∫((4u−9)/((u−(3/2))(u−(1/2))(u+(1/2))(u+(3/2))+1))du F(x) = ∫((4u−9)/((u^2 −(1/4))(u^2 −(9/4))+1))du F(x) = ∫((4u−9)/(u^4 −(5/2)u^2 +((25)/(16))))du F(x) = ∫((4u−9)/((u^2 −(5/4))^2 ))du F(x) = ∫[(4/(u−(5/4)))−(4/((u^2 −(5/4))^2 ))]du F(x) = 4ln∣u−(5/4)∣+((8u)/(5(u^2 −(5/4))))−((16)/( (√5)))atanh(((2u)/( (√5))))+C F(x) = 4ln∣x+(9/4)∣+((4(x+7))/(5(x^2 +7x+11))) −((16)/( (√5)))atanh(((2x+7)/( (√5))))+C](https://www.tinkutara.com/question/Q128930.png)
Answered by MJS_new last updated on 11/Jan/21
![∫((4x+5)/((x+2)(x+3)(x+4)(x+5)+1))dx= =∫((4x+5)/((x^2 +7x+11)^2 ))dx= [Ostrogradski] =((18x+53)/(5(x^2 +7x+11)))+((18)/5)∫(dx/(x^2 +7x+11))= =((18x+53)/(5(x^2 +7x+11)))+((36(√5))/(25))∫((1/(2x+7−(√5)))−(1/(2x+7+(√5))))dx= =((18x+53)/(5(x^2 +7x+11)))+((18(√5))/(25))(ln ∣2x+7−(√5)∣ −ln ∣2x+7+(√5)∣ = =((18x+53)/(5(x^2 +7x+11)))+((18(√5))/(25))ln ∣((2x+7−(√5))/(2x+7+(√5)))∣ +C](https://www.tinkutara.com/question/Q128966.png)