Menu Close

4x-5-x-2-x-3-x-4-x-5-1-dx-




Question Number 128900 by bemath last updated on 11/Jan/21
 ∫ ((4x+5)/((x+2)(x+3)(x+4)(x+5)+1)) dx?
4x+5(x+2)(x+3)(x+4)(x+5)+1dx?
Answered by liberty last updated on 11/Jan/21
 ∫ ((4x+5)/((x^2 +7x+10)(x^2 +7x+12)+1)) dx=(∗)   (x^2 +7x+10)(x^2 +7x+12)+1   let x^2 +7x=u ⇒(u+10)(u+12)+1=u^2 +22u+121   = (u+11)^2 =(x^2 +7x+11)^2   (∗) ∫ ((4x+5)/((x^2 +7x+11)^2 )) dx =   ∫ ((2(2x+7)−9)/((x^2 +7x+11)^2 )) dx = ∫((2(2x+7))/((x^2 +7x+11)^2 )) dx−∫(9/((x^2 +7x+11)^2 )) dx  = −(2/(x^2 +7x+11)) −∫ (9/((x^2 +7x+11)^2 )) dx  next..
4x+5(x2+7x+10)(x2+7x+12)+1dx=()(x2+7x+10)(x2+7x+12)+1letx2+7x=u(u+10)(u+12)+1=u2+22u+121=(u+11)2=(x2+7x+11)2()4x+5(x2+7x+11)2dx=2(2x+7)9(x2+7x+11)2dx=2(2x+7)(x2+7x+11)2dx9(x2+7x+11)2dx=2x2+7x+119(x2+7x+11)2dxnext..
Commented by bramlexs22 last updated on 11/Jan/21
I_2 =∫ ((9 dx)/(((x+(7/2))^2 −(((√5)/2))^2 )^2 ))   let x+(7/2) = ((√5)/2) sec t  I_2 =∫ ((((9(√5))/2) sec t tan t)/(((25)/4)tan^4 t)) dt  I_2 =((18(√5))/(25)) ∫((cos^2 t)/(sin^3 t)) dt  I_2 = ((18(√5))/(25)) (∫ csc^3  tdt −∫ csc t dt )
I2=9dx((x+72)2(52)2)2letx+72=52sectI2=952secttant254tan4tdtI2=18525cos2tsin3tdtI2=18525(csc3tdtcsctdt)
Answered by Olaf last updated on 11/Jan/21
F(x) = ∫((4x+5)/((x+2)(x+3)(x+4)(x+5)+1))dx  Let u = x+(7/2)  F(x) = ∫((4u−9)/((u−(3/2))(u−(1/2))(u+(1/2))(u+(3/2))+1))du  F(x) = ∫((4u−9)/((u^2 −(1/4))(u^2 −(9/4))+1))du  F(x) = ∫((4u−9)/(u^4 −(5/2)u^2 +((25)/(16))))du  F(x) = ∫((4u−9)/((u^2 −(5/4))^2 ))du  F(x) = ∫[(4/(u−(5/4)))−(4/((u^2 −(5/4))^2 ))]du  F(x) = 4ln∣u−(5/4)∣+((8u)/(5(u^2 −(5/4))))−((16)/( (√5)))atanh(((2u)/( (√5))))+C  F(x) = 4ln∣x+(9/4)∣+((4(x+7))/(5(x^2 +7x+11)))  −((16)/( (√5)))atanh(((2x+7)/( (√5))))+C
F(x)=4x+5(x+2)(x+3)(x+4)(x+5)+1dxLetu=x+72F(x)=4u9(u32)(u12)(u+12)(u+32)+1duF(x)=4u9(u214)(u294)+1duF(x)=4u9u452u2+2516duF(x)=4u9(u254)2duF(x)=[4u544(u254)2]duF(x)=4lnu54+8u5(u254)165atanh(2u5)+CF(x)=4lnx+94+4(x+7)5(x2+7x+11)165atanh(2x+75)+C
Answered by MJS_new last updated on 11/Jan/21
∫((4x+5)/((x+2)(x+3)(x+4)(x+5)+1))dx=  =∫((4x+5)/((x^2 +7x+11)^2 ))dx=       [Ostrogradski]  =((18x+53)/(5(x^2 +7x+11)))+((18)/5)∫(dx/(x^2 +7x+11))=  =((18x+53)/(5(x^2 +7x+11)))+((36(√5))/(25))∫((1/(2x+7−(√5)))−(1/(2x+7+(√5))))dx=  =((18x+53)/(5(x^2 +7x+11)))+((18(√5))/(25))(ln ∣2x+7−(√5)∣ −ln ∣2x+7+(√5)∣ =  =((18x+53)/(5(x^2 +7x+11)))+((18(√5))/(25))ln ∣((2x+7−(√5))/(2x+7+(√5)))∣ +C
4x+5(x+2)(x+3)(x+4)(x+5)+1dx==4x+5(x2+7x+11)2dx=[Ostrogradski]=18x+535(x2+7x+11)+185dxx2+7x+11==18x+535(x2+7x+11)+36525(12x+7512x+7+5)dx==18x+535(x2+7x+11)+18525(ln2x+75ln2x+7+5==18x+535(x2+7x+11)+18525ln2x+752x+7+5+C

Leave a Reply

Your email address will not be published. Required fields are marked *