Question Number 157456 by tounghoungko last updated on 23/Oct/21
$$\:\int\:\mathrm{5}^{\mathrm{3}−\mathrm{2}{x}} \:{dx}\:=? \\ $$
Answered by FelipeLz last updated on 24/Oct/21
$$\int\mathrm{5}^{\mathrm{3}−\mathrm{2}{x}} {dx}\:=\:\mathrm{5}^{\mathrm{3}} \int\mathrm{5}^{−\mathrm{2}{x}} {dx} \\ $$$$−\mathrm{2}{x}\:=\:{u} \\ $$$${dx}\:=\:−\frac{\mathrm{1}}{\mathrm{2}}{du} \\ $$$$−\frac{\mathrm{5}^{\mathrm{3}} }{\mathrm{2}}\int\mathrm{5}^{{u}} {du}\:=\:−\frac{\mathrm{5}^{\mathrm{3}} }{\mathrm{2}}\left(\frac{\mathrm{5}^{{u}} }{\mathrm{ln}\:\mathrm{5}}\right)+{c}\:=\:−\frac{\mathrm{5}^{\mathrm{3}−\mathrm{2}{x}} }{\mathrm{2ln}\:\mathrm{5}}+{c}\: \\ $$
Answered by mahdipoor last updated on 23/Oct/21
$$=\int{e}^{\left(\mathrm{3}−\mathrm{2}{x}\right){ln}\mathrm{5}} {dx}=\int−\frac{\mathrm{1}}{\mathrm{2}{ln}\mathrm{5}}{e}^{\left(\mathrm{3}−\mathrm{2}{x}\right){ln}\mathrm{5}} \left(−\mathrm{2}{ln}\mathrm{5}\right){dx}= \\ $$$$−\frac{\mathrm{1}}{\mathrm{2}{ln}\mathrm{5}}\int{e}^{\left(\mathrm{3}−\mathrm{2}{x}\right){ln}\mathrm{5}} \left(\left(\mathrm{3}−\mathrm{2}{x}\right){ln}\mathrm{5}\right)'{dx}= \\ $$$$−\frac{\mathrm{1}}{\mathrm{2}{ln}\mathrm{5}}\int{e}^{{u}} {du}=−\frac{{e}^{{u}} }{\mathrm{2}{ln}\mathrm{5}}=−\frac{{e}^{\left(\mathrm{3}−\mathrm{2}{x}\right){ln}\mathrm{5}} }{\mathrm{2}{ln}\mathrm{5}}=−\frac{\mathrm{5}^{\mathrm{3}−\mathrm{2}{x}} }{\mathrm{2}{ln}\mathrm{5}} \\ $$$$ \\ $$
Commented by tounghoungko last updated on 24/Oct/21
$${thx}\: \\ $$
Answered by mevaa last updated on 23/Oct/21
$$=\int{e}^{\left(\mathrm{3}−\mathrm{2}{x}\right)\mathrm{ln}\:\mathrm{5}} {dx} \\ $$$$=\int{e}^{\mathrm{3ln}\:\mathrm{5}−\mathrm{2}{x}\mathrm{ln}\:\mathrm{5}} {dx} \\ $$$$=\int{e}^{\mathrm{3ln}\:\mathrm{5}} ×{e}^{−\mathrm{2}{x}\mathrm{ln}\:\mathrm{5}} {dx} \\ $$$$={e}^{\mathrm{3ln}\:\mathrm{5}} \int{e}^{−\mathrm{2}{x}\mathrm{ln}\:\mathrm{5}} {dx} \\ $$$$=−{e}^{\mathrm{3ln}\:\mathrm{5}} /\mathrm{2ln}\:\mathrm{5}\int−\mathrm{2ln}\:\mathrm{5}{e}^{−\mathrm{2}{x}\mathrm{ln}\:\mathrm{5}} {dx} \\ $$$$=−{e}^{\mathrm{3ln}\:\mathrm{5}} /\mathrm{2ln}\:\mathrm{5}\left({e}^{−\mathrm{2ln}\:\mathrm{5}} \right)+{constante} \\ $$
Answered by physicstutes last updated on 24/Oct/21
$$\mathrm{Let}\:\mathrm{5}^{\mathrm{3}−\mathrm{2}{x}} \:=\:{e}^{{y}} \\ $$$$\Rightarrow\:{y}\:=\:\left(\mathrm{3}−\mathrm{2}{x}\right)\:\mathrm{ln}\:\mathrm{5} \\ $$$$\Rightarrow\:{dy}\:=\:−\mathrm{2}\:\mathrm{ln}\:\mathrm{5}\:{dx} \\ $$$$\:\mathrm{hence}\:{dx}\:=\:−\frac{{dy}}{\mathrm{2}\:\mathrm{ln5}\:} \\ $$$$\Rightarrow\:\int\mathrm{5}^{\mathrm{3}−\mathrm{2}{x}} {dx}\:=\:−\frac{\mathrm{1}}{\mathrm{2}\:\mathrm{ln}\:\mathrm{5}}\int{e}^{{y}} {dy}\:=\:−\frac{\mathrm{1}}{\mathrm{2}\:\mathrm{ln}\:\mathrm{5}}\left(\mathrm{5}^{\mathrm{3}−\mathrm{2}{x}} \right)+{k} \\ $$