Menu Close

5-log-5-3-5-3-log-5-3-3-




Question Number 145119 by imjagoll last updated on 02/Jul/21
                (5^(log _(5/3) (5)) /3^(log _(5/3) (3)) ) =?
5log53(5)3log53(3)=?
Answered by Rasheed.Sindhi last updated on 03/Jul/21
 (5^(log _(5/3) (5)) /3^(log _(5/3) (3)) ) =?   log _(5/3) (5)=a   ;  log _(5/3) (3)=b    ((5/3))^a =5   ; ((5/3))^b =3  ((((5/3))^a )/(((5/3))^b ))=(5/3)  ((5/3))^(a−b) =((5/3))^1   a−b=1→b=a−1  (5^(log _(5/3) (5)) /3^(log _(5/3) (3)) )=(5^a /3^b )=(5^a /3^(a−1) )  =3((5/3))^a   =3((5/3))^(log _(5/3) (5)) =3(5)=15       determinant (((b^(log_b (a)) =a)))
5log53(5)3log53(3)=?log53(5)=a;log53(3)=b(53)a=5;(53)b=3(53)a(53)b=53(53)ab=(53)1ab=1b=a15log53(5)3log53(3)=5a3b=5a3a1=3(53)a=3(53)log53(5)=3(5)=15blogb(a)=a
Answered by liberty last updated on 03/Jul/21
let  { ((log _(5/3) (5)=x ⇒5^(x−1) =3^x )),((log _(5/3) (3)=y⇒5^y =3^(y+1) )) :}    { ((5 = 3^(x/(x−1)) )),(((3^(x/(x−1)) )^y = 3^(y+1) )) :}⇒((xy)/(x−1))=y+1  ⇒ xy=xy+x−y−1  ⇒x=y+1 . so the value of   (5^(log _(5/3) (5)) /3^(log _(5/3) (3)) ) = (5^x /3^y ) = ((5.5^y )/3^y )  ⇒ 5×((5/3))^y = 5×3 = 15
let{log53(5)=x5x1=3xlog53(3)=y5y=3y+1{5=3xx1(3xx1)y=3y+1xyx1=y+1xy=xy+xy1x=y+1.sothevalueof5log53(5)3log53(3)=5x3y=5.5y3y5×(53)y=5×3=15
Answered by Rasheed.Sindhi last updated on 03/Jul/21
                (5^(log _(5/3) (5)) /3^(log _(5/3) (3)) )        =((    (5^(log _(5/3) (5)) /3^(log _(5/3) (5)) )×3^(log _(5/3) (5))    )/3^(log _(5/3) (3)) )    =((5/3))^(log _(5/3) (5)) ×3^(log _(5/3) (5)−log _(5/3) (3))    determinant (((b^(log_b a) =a)))  =5×3^(log_(5/3) ((5/3))) =5×3^1 =15   determinant (((log_a a=1)))
5log53(5)3log53(3)=5log53(5)3log53(5)×3log53(5)3log53(3)=(53)log53(5)×3log53(5)log53(3)blogba=a=5×3log53(53)=5×31=15logaa=1

Leave a Reply

Your email address will not be published. Required fields are marked *