Menu Close

5-x-2-594-5-5-x-3-594-x-3-log-5-5-log-5-594-x-3-log-5-594-x-log-5-594-3-




Question Number 124819 by Ndala last updated on 06/Dec/20
5^(x+2) =((594)/5)  5^(x+3) =594  (x+3)log _5 5=log _5 594  x+3=log _5 594→x=log _5 594−3
$$\mathrm{5}^{{x}+\mathrm{2}} =\frac{\mathrm{594}}{\mathrm{5}} \\ $$$$\mathrm{5}^{{x}+\mathrm{3}} =\mathrm{594} \\ $$$$\left({x}+\mathrm{3}\right)\mathrm{log}\:_{\mathrm{5}} \mathrm{5}=\mathrm{log}\:_{\mathrm{5}} \mathrm{594} \\ $$$${x}+\mathrm{3}=\mathrm{log}\:_{\mathrm{5}} \mathrm{594}\rightarrow{x}=\mathrm{log}\:_{\mathrm{5}} \mathrm{594}−\mathrm{3} \\ $$
Commented by $@y@m last updated on 06/Dec/20
Please use editor option (available  under ≡) for rough work.
$${Please}\:{use}\:{editor}\:{option}\:\left({available}\right. \\ $$$$\left.{under}\:\equiv\right)\:{for}\:{rough}\:{work}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *