Menu Close

512x-1-x-3-1-find-volue-of-n-1-x-2-n-




Question Number 188482 by mathlove last updated on 02/Mar/23
512x^(1−x^(−3) ) =−1  find  volue  of  Σ_(n=1) ^∞ (x^2 )^n =?
$$\mathrm{512}{x}^{\mathrm{1}−{x}^{−\mathrm{3}} } =−\mathrm{1} \\ $$$${find}\:\:{volue}\:\:{of}\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left({x}^{\mathrm{2}} \right)^{{n}} =? \\ $$
Answered by mr W last updated on 02/Mar/23
512x^(1−x^(−3) ) =−1  (512)^(−3) (x^(−3) )^(1−x^(−3) ) =(−1)^(−3) =−1  (x^(−3) )^(x^(−3) −1) =−512^(−3) =(−8)^(−9)   ⇒x^(−3) =−8=(−2)^3 =(−(1/2))^(−3)   ⇒x=−(1/2)  ⇒x^2 =(1/4)  Σ_(n=1) ^∞ x^(2n) =((1/4)/(1−(1/4)))=(1/3) ✓
$$\mathrm{512}{x}^{\mathrm{1}−{x}^{−\mathrm{3}} } =−\mathrm{1} \\ $$$$\left(\mathrm{512}\right)^{−\mathrm{3}} \left({x}^{−\mathrm{3}} \right)^{\mathrm{1}−{x}^{−\mathrm{3}} } =\left(−\mathrm{1}\right)^{−\mathrm{3}} =−\mathrm{1} \\ $$$$\left({x}^{−\mathrm{3}} \right)^{{x}^{−\mathrm{3}} −\mathrm{1}} =−\mathrm{512}^{−\mathrm{3}} =\left(−\mathrm{8}\right)^{−\mathrm{9}} \\ $$$$\Rightarrow{x}^{−\mathrm{3}} =−\mathrm{8}=\left(−\mathrm{2}\right)^{\mathrm{3}} =\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)^{−\mathrm{3}} \\ $$$$\Rightarrow{x}=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow{x}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{x}^{\mathrm{2}{n}} =\frac{\frac{\mathrm{1}}{\mathrm{4}}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}}}=\frac{\mathrm{1}}{\mathrm{3}}\:\checkmark \\ $$
Commented by mathlove last updated on 02/Mar/23
i do′nt understand for this  (512)^(−3) (x^(−3) )^(1−x^(−3) ) =(x^(−3) )^(x^(−3) −1) =−(512)^(−3)   pleas discrib this
$${i}\:{do}'{nt}\:{understand}\:{for}\:{this} \\ $$$$\left(\mathrm{512}\right)^{−\mathrm{3}} \left({x}^{−\mathrm{3}} \right)^{\mathrm{1}−{x}^{−\mathrm{3}} } =\left({x}^{−\mathrm{3}} \right)^{{x}^{−\mathrm{3}} −\mathrm{1}} =−\left(\mathrm{512}\right)^{−\mathrm{3}} \\ $$$${pleas}\:{discrib}\:{this} \\ $$
Commented by mr W last updated on 02/Mar/23
(512)^(−3) (x^(−3) )^(1−x^(−3) ) =(−1)^(−3) =−1   clear?  (x^(−3) )^(1−x^(−3) ) =−(512)^3    clear?  (x^(−3) )^(−(1−x^(−3) )) =(−1)^(−3) (512)^(−3)    clear?  (x^(−3) )^(x^(−3) −1) =−(512)^(−3)    clear?  (x^(−3) )^(x^(−3) −1) =(−512)^(−3)    clear?  (x^(−3) )^(x^(−3) −1) =(−8^3 )^(−3)    clear?  (x^(−3) )^(x^(−3) −1) =(−8)^(−9)    clear?
$$\left(\mathrm{512}\right)^{−\mathrm{3}} \left({x}^{−\mathrm{3}} \right)^{\mathrm{1}−{x}^{−\mathrm{3}} } =\left(−\mathrm{1}\right)^{−\mathrm{3}} =−\mathrm{1}\:\:\:{clear}? \\ $$$$\left({x}^{−\mathrm{3}} \right)^{\mathrm{1}−{x}^{−\mathrm{3}} } =−\left(\mathrm{512}\right)^{\mathrm{3}} \:\:\:{clear}? \\ $$$$\left({x}^{−\mathrm{3}} \right)^{−\left(\mathrm{1}−{x}^{−\mathrm{3}} \right)} =\left(−\mathrm{1}\right)^{−\mathrm{3}} \left(\mathrm{512}\right)^{−\mathrm{3}} \:\:\:{clear}? \\ $$$$\left({x}^{−\mathrm{3}} \right)^{{x}^{−\mathrm{3}} −\mathrm{1}} =−\left(\mathrm{512}\right)^{−\mathrm{3}} \:\:\:{clear}? \\ $$$$\left({x}^{−\mathrm{3}} \right)^{{x}^{−\mathrm{3}} −\mathrm{1}} =\left(−\mathrm{512}\right)^{−\mathrm{3}} \:\:\:{clear}? \\ $$$$\left({x}^{−\mathrm{3}} \right)^{{x}^{−\mathrm{3}} −\mathrm{1}} =\left(−\mathrm{8}^{\mathrm{3}} \right)^{−\mathrm{3}} \:\:\:{clear}? \\ $$$$\left({x}^{−\mathrm{3}} \right)^{{x}^{−\mathrm{3}} −\mathrm{1}} =\left(−\mathrm{8}\right)^{−\mathrm{9}} \:\:\:{clear}? \\ $$
Commented by mathlove last updated on 02/Mar/23
tanks mr very thank
$${tanks}\:{mr}\:{very}\:{thank} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *