Menu Close

5e-4t-10e-2t-2-e-2t-2-dt-




Question Number 129038 by bramlexs22 last updated on 12/Jan/21
∫ ((5e^(4t) +10e^(2t) +2)/(e^(2t) +2)) dt
$$\int\:\frac{\mathrm{5e}^{\mathrm{4t}} +\mathrm{10e}^{\mathrm{2t}} +\mathrm{2}}{\mathrm{e}^{\mathrm{2t}} +\mathrm{2}}\:\mathrm{dt}\: \\ $$
Answered by liberty last updated on 12/Jan/21
 ∫ (((5e^(2t) +1)(e^(2t) +2)−e^(2t) )/(e^(2t) +2)) dt =    ∫(5e^(2t) +1)dt−∫ (e^(2t) /(e^(2t) +1)) dt=   (5/2)e^(2t) +t−(1/2)∫ ((d(e^(2t) +2))/(e^(2t) +2)) =   (5/2)e^(2t) +t−(1/2)ln ∣e^(2t) +2 ∣ + C
$$\:\int\:\frac{\left(\mathrm{5e}^{\mathrm{2t}} +\mathrm{1}\right)\left(\mathrm{e}^{\mathrm{2t}} +\mathrm{2}\right)−\mathrm{e}^{\mathrm{2t}} }{\mathrm{e}^{\mathrm{2t}} +\mathrm{2}}\:\mathrm{dt}\:=\: \\ $$$$\:\int\left(\mathrm{5e}^{\mathrm{2t}} +\mathrm{1}\right)\mathrm{dt}−\int\:\frac{\mathrm{e}^{\mathrm{2t}} }{\mathrm{e}^{\mathrm{2t}} +\mathrm{1}}\:\mathrm{dt}= \\ $$$$\:\frac{\mathrm{5}}{\mathrm{2}}\mathrm{e}^{\mathrm{2t}} +\mathrm{t}−\frac{\mathrm{1}}{\mathrm{2}}\int\:\frac{\mathrm{d}\left(\mathrm{e}^{\mathrm{2t}} +\mathrm{2}\right)}{\mathrm{e}^{\mathrm{2t}} +\mathrm{2}}\:= \\ $$$$\:\frac{\mathrm{5}}{\mathrm{2}}\mathrm{e}^{\mathrm{2t}} +\mathrm{t}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\mid\mathrm{e}^{\mathrm{2t}} +\mathrm{2}\:\mid\:+\:\mathrm{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *