Question Number 36547 by tanmay.chaudhury50@gmail.com last updated on 03/Jun/18
$$\int\frac{\mathrm{5}{x}^{\mathrm{4}} +\mathrm{4}{x}^{\mathrm{5}} }{\left({x}^{\mathrm{5}} +{x}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$
Answered by ajfour last updated on 03/Jun/18
$$=−\int\frac{\left(−\frac{\mathrm{5}}{{x}^{\mathrm{6}} }−\frac{\mathrm{4}}{{x}^{\mathrm{5}} }\right){dx}}{\left(\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{4}} }+\frac{\mathrm{1}}{{x}^{\mathrm{5}} }\right)^{\mathrm{2}} }=−\int\frac{{dt}}{{t}^{\mathrm{2}} } \\ $$$$\:=\frac{\mathrm{1}}{{t}}+{c}\:\:=\:\frac{{x}^{\mathrm{5}} }{{x}^{\mathrm{5}} +{x}+\mathrm{1}}+{c}\:. \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 03/Jun/18
$${bah}…{very}\:{good}…{excellent}… \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 03/Jun/18
$${sir}\:{ajfour}\:{forgot}\:{to}\:{put}\:{square}\:{in}\:{D}_{{r}} \\ $$
Commented by ajfour last updated on 03/Jun/18
$${yes},\:{very}\:{silly}\:! \\ $$
Answered by MJS last updated on 03/Jun/18
$$\mathrm{Ostrogradski}'\mathrm{s}\:\mathrm{Method}\:\mathrm{once}\:\mathrm{more} \\ $$$$\int\frac{{p}\left({x}\right)}{{q}\left({x}\right)}{dx}=\frac{{p}_{\mathrm{1}} \left({x}\right)}{{q}_{\mathrm{1}} \left({x}\right)}+\int\frac{{p}_{\mathrm{2}} \left({x}\right)}{{q}_{\mathrm{2}} \left({x}\right)}{dx} \\ $$$${q}_{\mathrm{1}} \left({x}\right)=\mathrm{gcd}\left({q}\left({x}\right),\:{q}'\left({x}\right)\right) \\ $$$${q}_{\mathrm{2}} \left({x}\right)=\frac{{q}\left({x}\right)}{{q}_{\mathrm{1}} \left({x}\right)} \\ $$$${p}_{\mathrm{1}} ,\:{p}_{\mathrm{2}} \:\left(\mathrm{polynomes},\:\mathrm{degree}\left({p}_{{i}} \right)<\mathrm{degree}\left({q}_{{i}} \right)\right) \\ $$$$\mathrm{we}\:\mathrm{get}\:\mathrm{like}\:\mathrm{this}: \\ $$$$\left(\int\frac{{p}\left({x}\right)}{{q}\left({x}\right)}{dx}=\frac{{p}_{\mathrm{1}} \left({x}\right)}{{q}_{\mathrm{1}} \left({x}\right)}+\int\frac{{p}_{\mathrm{2}} \left({x}\right)}{{q}_{\mathrm{2}} \left({x}\right)}{dx}\right)'\:\Rightarrow \\ $$$$\Rightarrow\:\frac{{p}\left({x}\right)}{{q}\left({x}\right)}=\left(\frac{{p}_{\mathrm{1}} \left({x}\right)}{{q}_{\mathrm{1}} \left({x}\right)}\right)'+\frac{{p}_{\mathrm{2}} \left({x}\right)}{{q}_{\mathrm{2}} \left({x}\right)} \\ $$$$\mathrm{match}\:\mathrm{the}\:\mathrm{constants} \\ $$$$ \\ $$$$\mathrm{in}\:\mathrm{this}\:\mathrm{case} \\ $$$${p}\left({x}\right)=\mathrm{4}{x}^{\mathrm{5}} +\mathrm{5}{x}^{\mathrm{4}} \\ $$$${q}\left({x}\right)=\left({x}^{\mathrm{5}} +{x}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$${q}'\left({x}\right)=\mathrm{2}\left(\mathrm{5}{x}^{\mathrm{4}} +\mathrm{1}\right)\left({x}^{\mathrm{5}} +{x}+\mathrm{1}\right) \\ $$$${q}_{\mathrm{1}} \left({x}\right)={q}_{\mathrm{2}} \left({x}\right)={x}^{\mathrm{5}} +{x}+\mathrm{1} \\ $$$$\frac{\mathrm{4}{x}^{\mathrm{5}} +\mathrm{5}{x}^{\mathrm{4}} }{\left({x}^{\mathrm{5}} +{x}+\mathrm{1}\right)^{\mathrm{2}} }=\left(\frac{{c}_{\mathrm{1}} {x}^{\mathrm{4}} +{c}_{\mathrm{2}} {x}^{\mathrm{3}} +{c}_{\mathrm{3}} {x}^{\mathrm{2}} +{c}_{\mathrm{4}} {x}+{c}_{\mathrm{5}} }{{x}^{\mathrm{5}} +{x}+\mathrm{1}}\right)'+\frac{{c}_{\mathrm{6}} {x}^{\mathrm{4}} +{c}_{\mathrm{7}} {x}^{\mathrm{3}} +{c}_{\mathrm{8}} {x}^{\mathrm{2}} +{c}_{\mathrm{9}} {x}+{c}_{\mathrm{10}} }{{x}^{\mathrm{5}} +{x}+\mathrm{1}}\:\Rightarrow \\ $$$$\Rightarrow\:{c}_{\mathrm{4}} =−\mathrm{1};\:{c}_{\mathrm{5}} =−\mathrm{1};\:\mathrm{all}\:\mathrm{other}\:{c}_{{i}} =\mathrm{0} \\ $$$${p}_{\mathrm{1}} \left({x}\right)=−{x}−\mathrm{1} \\ $$$${p}_{\mathrm{2}} \left({x}\right)=\mathrm{0} \\ $$$$ \\ $$$$\int\frac{\mathrm{5}{x}^{\mathrm{4}} +\mathrm{4}{x}^{\mathrm{5}} }{\left({x}^{\mathrm{5}} +{x}+\mathrm{1}\right)^{\mathrm{2}} }=−\frac{{x}+\mathrm{1}}{{x}^{\mathrm{5}} +{x}+\mathrm{1}}+{C} \\ $$
Commented by MJS last updated on 03/Jun/18
$$…\mathrm{I}\:\mathrm{didn}'\mathrm{t}\:\mathrm{see}\:\mathrm{it}\:\mathrm{either}… \\ $$
Commented by ajfour last updated on 03/Jun/18
$${please}\:{check}. \\ $$
Commented by MJS last updated on 03/Jun/18
$$\left(−\frac{{x}+\mathrm{1}}{{x}^{\mathrm{5}} +{x}+\mathrm{1}}\right)'=−\frac{\left({x}^{\mathrm{5}} +{x}+\mathrm{1}\right)−\left({x}+\mathrm{1}\right)\left(\mathrm{5}{x}^{\mathrm{4}} +\mathrm{1}\right)}{\left({x}^{\mathrm{5}} +{x}+\mathrm{1}\right)^{\mathrm{2}} }= \\ $$$$=−\frac{−\mathrm{4}{x}^{\mathrm{5}} +\mathrm{5}{x}^{\mathrm{4}} }{\left({x}^{\mathrm{5}} +{x}+\mathrm{1}\right)^{\mathrm{2}} }=\frac{\mathrm{5}{x}^{\mathrm{4}} +\mathrm{4}{x}^{\mathrm{5}} }{\left({x}^{\mathrm{5}} +{x}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$…\mathrm{so}\:\mathrm{this}\:\mathrm{is}\:\mathrm{true}\:\mathrm{too}… \\ $$$$ \\ $$$$\frac{{x}^{\mathrm{5}} }{{x}^{\mathrm{5}} +{x}+\mathrm{1}}−\mathrm{1}=−\frac{{x}+\mathrm{1}}{{x}^{\mathrm{5}} +{x}+\mathrm{1}}\:\mathrm{so}\:\mathrm{it}'\mathrm{s}\:\mathrm{just}\:\mathrm{different}\:{C} \\ $$
Commented by ajfour last updated on 03/Jun/18
$${o}'\:{yes}!\:{thanks}. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 03/Jun/18
$$\int\frac{\mathrm{5}{x}^{\mathrm{4}} +\mathrm{4}{x}^{\mathrm{5}} }{\left({x}^{\mathrm{5}} +{x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$$$\int\frac{\mathrm{5}{x}^{\mathrm{4}} +\mathrm{4}{x}^{\mathrm{5}} }{\left\{{x}^{\mathrm{5}} \left(\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{4}} }+\frac{\mathrm{1}}{{x}^{\mathrm{5}} }\right)\right\}^{\mathrm{2}} } \\ $$$$\int\frac{\frac{\mathrm{5}{x}^{\mathrm{4}} +\mathrm{4}{x}^{\mathrm{5}} }{{x}^{\mathrm{10}} }}{\left(\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{4}} }+\frac{\mathrm{1}}{{x}^{\mathrm{5}} }\right)^{\mathrm{2}} }{dx} \\ $$$$\int\frac{\frac{\mathrm{5}}{{x}^{\mathrm{6}} }+\frac{\mathrm{4}}{{x}^{\mathrm{5}} }}{\left(\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{4}} }+\frac{\mathrm{1}}{{x}^{\mathrm{5}} }\right)^{\mathrm{2}} } \\ $$$${t}=\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{4}} }+\frac{\mathrm{1}}{{x}^{\mathrm{5}} } \\ $$$${dt}=\mathrm{0}+\frac{−\mathrm{4}}{{x}^{\mathrm{5}} }+\frac{−\mathrm{5}}{{x}^{\mathrm{6}} }\:{dx} \\ $$$$\int\frac{−{dt}}{{t}^{\mathrm{2}} } \\ $$$$=−\mathrm{1}\int{t}^{−\mathrm{2}} {dt} \\ $$$$=\frac{\mathrm{1}}{{t}}+{c}….{ans} \\ $$$$=\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{4}} }+\frac{\mathrm{1}}{{x}^{\mathrm{5}} }}+{c}\:\:\:{ans} \\ $$$${y}=\frac{{x}^{\mathrm{5}} }{{x}^{\mathrm{5}} +{x}+\mathrm{1}}+{c} \\ $$$$\frac{{dy}}{{dx}}=\frac{\left({x}^{\mathrm{5}} +{x}+\mathrm{1}\right)\mathrm{5}{x}^{\mathrm{4}} −{x}^{\mathrm{5}} \left(\mathrm{5}{x}^{\mathrm{4}} +\mathrm{1}\right)}{\left({x}^{\mathrm{5}} +{x}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{5}{x}^{\mathrm{9}} +\mathrm{5}{x}^{\mathrm{5}} +\mathrm{5}{x}^{\mathrm{4}} −\mathrm{5}{x}^{\mathrm{9}} −{x}^{\mathrm{5}} }{\left({x}^{\mathrm{5}} +{x}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{4}{x}^{\mathrm{5}} +\mathrm{5}{x}^{\mathrm{4}} }{\left({x}^{\mathrm{5}} +{x}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${so}\:{my}\:{answer}\:{is}\:{correct}… \\ $$
Commented by ajfour last updated on 03/Jun/18
$${thanks},\:{i}'{ve}\:{corrected}. \\ $$