Question Number 176785 by Ar Brandon last updated on 26/Sep/22
$$\frac{\mathrm{6}}{\mathrm{1}+{c}^{{x}} }+\frac{\mathrm{1}}{\mathrm{1}+{c}^{−{x}} }={y} \\ $$$$\mathrm{Express}\:\:\frac{\mathrm{11}}{\mathrm{1}+{c}^{{x}} }+\frac{\mathrm{1}}{\mathrm{1}+{c}^{−{x}} }\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:{y} \\ $$
Commented by Ar Brandon last updated on 26/Sep/22
$$\mathrm{Ans}.\:\mathrm{2}{y}−\mathrm{1} \\ $$
Answered by a.lgnaoui last updated on 26/Sep/22
$${y}=\mathrm{6}\frac{\mathrm{1}}{\mathrm{1}+{c}^{{x}} }+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{{c}^{{x}} }}=\mathrm{6}\frac{\mathrm{1}}{\mathrm{1}+{c}^{{x}} }+\frac{{c}^{{x}} }{\mathrm{1}+{c}^{{x}} } \\ $$$${y}=\mathrm{6}\frac{\mathrm{1}}{\mathrm{1}+{c}^{{x}} }+\frac{\mathrm{1}+{c}^{{x}} −\mathrm{1}}{\mathrm{1}+{c}^{{x}} }=\mathrm{5}\frac{\mathrm{1}}{\mathrm{1}+{c}^{{x}} }+\mathrm{1} \\ $$$$\frac{\mathrm{11}}{\mathrm{1}+{c}^{{x}} }+\frac{\mathrm{1}}{\mathrm{1}+{c}^{−{x}} }=\:\frac{\mathrm{11}}{\mathrm{1}+{c}^{{x}} }+\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}+{c}^{{x}} }=\mathrm{10}\frac{\mathrm{1}}{\mathrm{1}+{c}^{{x}} }+\mathrm{1} \\ $$$$\frac{\mathrm{11}}{\mathrm{1}+{c}^{{x}} }+\frac{\mathrm{1}}{\mathrm{1}+{c}^{−{x}} }=\mathrm{2}{y}−\mathrm{1} \\ $$
Commented by Ar Brandon last updated on 26/Sep/22
Thank you, Sir!
Answered by mr W last updated on 26/Sep/22
$$\frac{\mathrm{6}+{c}^{{x}} }{\mathrm{1}+{c}^{{x}} }={y} \\ $$$$\frac{\mathrm{5}}{\mathrm{1}+{c}^{{x}} }={y}−\mathrm{1} \\ $$$$ \\ $$$$\frac{\mathrm{11}}{\mathrm{1}+{c}^{{x}} }+\frac{\mathrm{1}}{\mathrm{1}+{c}^{−{x}} } \\ $$$$=\frac{\mathrm{6}}{\mathrm{1}+{c}^{{x}} }+\frac{\mathrm{1}}{\mathrm{1}+{c}^{−{x}} }+\frac{\mathrm{5}}{\mathrm{1}+{c}^{{x}} } \\ $$$$={y}+{y}−\mathrm{1} \\ $$$$=\mathrm{2}{y}−\mathrm{1} \\ $$
Commented by Tawa11 last updated on 26/Sep/22
$$\mathrm{Great}\:\mathrm{sirs} \\ $$
Commented by Ar Brandon last updated on 26/Sep/22
Thank you, Sir!