Menu Close

6-2-5-which-one-correct-6-2-5-6-2-5-3-5-6-10-15-0-6-




Question Number 56243 by Kunal12588 last updated on 12/Mar/19
6/2×5   which one correct  6/2×5           6/2×5  =3×5             =6/10  =15                  =0.6
$$\mathrm{6}/\mathrm{2}×\mathrm{5} \\ $$$$\:{which}\:{one}\:{correct} \\ $$$$\mathrm{6}/\mathrm{2}×\mathrm{5}\:\:\:\:\:\:\:\:\:\:\:\mathrm{6}/\mathrm{2}×\mathrm{5} \\ $$$$=\mathrm{3}×\mathrm{5}\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{6}/\mathrm{10} \\ $$$$=\mathrm{15}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{0}.\mathrm{6} \\ $$
Answered by MJS last updated on 12/Mar/19
one after the other. for your 2^(nd)  version you  need brackets  6/2×5=3×5=15  6/(2×5)=6/10=0.6  it′s similar to this:  6−2+5=4+5=9  6−(2+5)=6−7=−1
$$\mathrm{one}\:\mathrm{after}\:\mathrm{the}\:\mathrm{other}.\:\mathrm{for}\:\mathrm{your}\:\mathrm{2}^{\mathrm{nd}} \:\mathrm{version}\:\mathrm{you} \\ $$$$\mathrm{need}\:\mathrm{brackets} \\ $$$$\mathrm{6}/\mathrm{2}×\mathrm{5}=\mathrm{3}×\mathrm{5}=\mathrm{15} \\ $$$$\mathrm{6}/\left(\mathrm{2}×\mathrm{5}\right)=\mathrm{6}/\mathrm{10}=\mathrm{0}.\mathrm{6} \\ $$$$\mathrm{it}'\mathrm{s}\:\mathrm{similar}\:\mathrm{to}\:\mathrm{this}: \\ $$$$\mathrm{6}−\mathrm{2}+\mathrm{5}=\mathrm{4}+\mathrm{5}=\mathrm{9} \\ $$$$\mathrm{6}−\left(\mathrm{2}+\mathrm{5}\right)=\mathrm{6}−\mathrm{7}=−\mathrm{1} \\ $$
Commented by Kunal12588 last updated on 12/Mar/19
thanks sir.
$${thanks}\:{sir}. \\ $$
Commented by Kunal12588 last updated on 12/Mar/19
sir we can change  6−2+5=6−(2−5)  is there any way for 6/2×5 for multiplying  first then divide.
$${sir}\:{we}\:{can}\:{change} \\ $$$$\mathrm{6}−\mathrm{2}+\mathrm{5}=\mathrm{6}−\left(\mathrm{2}−\mathrm{5}\right) \\ $$$${is}\:{there}\:{any}\:{way}\:{for}\:\mathrm{6}/\mathrm{2}×\mathrm{5}\:{for}\:{multiplying} \\ $$$${first}\:{then}\:{divide}.\: \\ $$
Commented by MJS last updated on 12/Mar/19
it′s similar again:  6/2×5=6/(2/5)  but it′s also commutative:  a−b is originally defined as addition of the  inverse element: a+(−b)  similar  a/b=a×b^(−1)   6+(−2)+5=6+5+(−2)=(−2)+5+6=...  6×2^(−1) ×5=6×5×2^(−1) =2^(−1) ×5×6=...
$$\mathrm{it}'\mathrm{s}\:\mathrm{similar}\:\mathrm{again}: \\ $$$$\mathrm{6}/\mathrm{2}×\mathrm{5}=\mathrm{6}/\left(\mathrm{2}/\mathrm{5}\right) \\ $$$$\mathrm{but}\:\mathrm{it}'\mathrm{s}\:\mathrm{also}\:\mathrm{commutative}: \\ $$$${a}−{b}\:\mathrm{is}\:\mathrm{originally}\:\mathrm{defined}\:\mathrm{as}\:\mathrm{addition}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{inverse}\:\mathrm{element}:\:{a}+\left(−{b}\right) \\ $$$$\mathrm{similar} \\ $$$${a}/{b}={a}×{b}^{−\mathrm{1}} \\ $$$$\mathrm{6}+\left(−\mathrm{2}\right)+\mathrm{5}=\mathrm{6}+\mathrm{5}+\left(−\mathrm{2}\right)=\left(−\mathrm{2}\right)+\mathrm{5}+\mathrm{6}=… \\ $$$$\mathrm{6}×\mathrm{2}^{−\mathrm{1}} ×\mathrm{5}=\mathrm{6}×\mathrm{5}×\mathrm{2}^{−\mathrm{1}} =\mathrm{2}^{−\mathrm{1}} ×\mathrm{5}×\mathrm{6}=… \\ $$
Commented by Kunal12588 last updated on 13/Mar/19
great thanks once again.
$${great}\:{thanks}\:{once}\:{again}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *