Menu Close

6-2020-8-2020-mod-49-Show-your-elegant-workings-please-Thanks-a-lot-




Question Number 121608 by naka3546 last updated on 10/Nov/20
(6^(2020)  + 8^(2020) ) mod 49  ?  Show  your  elegant  workings , please.  Thanks  a lot.
(62020+82020)mod49?Showyourelegantworkings,please.Thanksalot.
Answered by mr W last updated on 10/Nov/20
6^(2020) +8^(2020)   =(7−1)^(2020) +(7+1)^(2020)   =(1−7)^(2020) +(1+7)^(2020)   =Σ_(k=0) ^(2020) C_k ^(2020) (−1)^k 7^k +Σ_(k=0) ^(2020) C_k ^(2020) 7^k   =Σ_(k=0,2,...) ^(2020) 2C_k ^(2020) 7^k   =2+2Σ_(k=1) ^(1010) C_(2k) ^(2020) 7^(2k)   =2+2Σ_(k=1) ^(1010) C_(2k) ^(2020) 49^k   ⇒(6^(2020) +8^(2020) ) mod 49=2
62020+82020=(71)2020+(7+1)2020=(17)2020+(1+7)2020=2020k=0Ck2020(1)k7k+2020k=0Ck20207k=2020k=0,2,2Ck20207k=2+21010k=1C2k202072k=2+21010k=1C2k202049k(62020+82020)mod49=2
Answered by Rasheed.Sindhi last updated on 10/Nov/20
              ≡ An Other Way ≡  ^• 6^7 ≡−1(mod49)     2020=7×288+4  (6^7 )^(288) (6)^4 ≡(−1)^(144) (−1)^4 (mod49)  6^(2020) ≡1(mod49)....................A    ^• 8^7 ≡1(mod49)  (8^7 )^(288) (8)^4 ≡(1)^(288) (1)^4 (mod49)  8^(2020) ≡1(mod 49).................B  A+B:  6^(2020) +8^(2020) ≡2(mod49)
AnOtherWay671(mod49)2020=7×288+4(67)288(6)4(1)144(1)4(mod49)620201(mod49)..A871(mod49)(87)288(8)4(1)288(1)4(mod49)820201(mod49)..BA+B:62020+820202(mod49)

Leave a Reply

Your email address will not be published. Required fields are marked *