Menu Close

6-3-3-1-3-9-1-3-simplify-




Question Number 59812 by ANTARES VY last updated on 15/May/19
(6/(3+(3)^(1/3) +(9)^(1/3) ))   simplify.
$$\frac{\mathrm{6}}{\mathrm{3}+\sqrt[{\mathrm{3}}]{\mathrm{3}}+\sqrt[{\mathrm{3}}]{\mathrm{9}}}\:\:\:\boldsymbol{\mathrm{simplify}}. \\ $$
Commented by Kunal12588 last updated on 15/May/19
let (3)^(1/3) =a  ⇒(9)^(1/3) =a^2   ⇒3=a^3   a+a^2 +a^3 =((a(a^3 −1))/(a−1))    [sum of GP]  (6/(3+(3)^(1/3) +(9)^(1/3) ))  =((2a^3 )/((a(a^3 −1))/(a−1)))=((2a^2 (a−1))/((a^3 −1)))=((2(a^3 −a^2 ))/(a^3 −1))  =((2(3−(9)^(1/3) ))/(3−1))=3−(9)^(1/3)
$${let}\:\sqrt[{\mathrm{3}}]{\mathrm{3}}={a} \\ $$$$\Rightarrow\sqrt[{\mathrm{3}}]{\mathrm{9}}={a}^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{3}={a}^{\mathrm{3}} \\ $$$${a}+{a}^{\mathrm{2}} +{a}^{\mathrm{3}} =\frac{{a}\left({a}^{\mathrm{3}} −\mathrm{1}\right)}{{a}−\mathrm{1}}\:\:\:\:\left[{sum}\:{of}\:{GP}\right] \\ $$$$\frac{\mathrm{6}}{\mathrm{3}+\sqrt[{\mathrm{3}}]{\mathrm{3}}+\sqrt[{\mathrm{3}}]{\mathrm{9}}} \\ $$$$=\frac{\mathrm{2}{a}^{\mathrm{3}} }{\frac{{a}\left({a}^{\mathrm{3}} −\mathrm{1}\right)}{{a}−\mathrm{1}}}=\frac{\mathrm{2}{a}^{\mathrm{2}} \left({a}−\mathrm{1}\right)}{\left({a}^{\mathrm{3}} −\mathrm{1}\right)}=\frac{\mathrm{2}\left({a}^{\mathrm{3}} −{a}^{\mathrm{2}} \right)}{{a}^{\mathrm{3}} −\mathrm{1}} \\ $$$$=\frac{\mathrm{2}\left(\mathrm{3}−\sqrt[{\mathrm{3}}]{\mathrm{9}}\right)}{\mathrm{3}−\mathrm{1}}=\mathrm{3}−\sqrt[{\mathrm{3}}]{\mathrm{9}} \\ $$
Answered by Kunal12588 last updated on 15/May/19
S= (3)^(1/3) +(9)^(1/3) +3  S((3)^(1/3) )=(9)^(1/3) +3+3(3)^(1/3)   ⇒S=(((3)^(1/3) −3(3)^(1/3) )/((1−(3)^(1/3) )))=(((3)^(1/3) (3−1))/( (3)^(1/3) −1))=((2(3)^(1/3) )/( (3)^(1/3) −1))  (6/(3+(3)^(1/3) +(9)^(1/3) ))=(6/((2(3)^(1/3) )/( (3)^(1/3) −1)))=((6((3)^(1/3) −1))/(2(3)^(1/3) ))=(9)^(1/3) ((3)^(1/3) −1)  (6/(3+(3)^(1/3) +(9)^(1/3) ))=3−(9)^(1/3)
$${S}=\:\sqrt[{\mathrm{3}}]{\mathrm{3}}+\sqrt[{\mathrm{3}}]{\mathrm{9}}+\mathrm{3} \\ $$$${S}\left(\sqrt[{\mathrm{3}}]{\mathrm{3}}\right)=\sqrt[{\mathrm{3}}]{\mathrm{9}}+\mathrm{3}+\mathrm{3}\sqrt[{\mathrm{3}}]{\mathrm{3}} \\ $$$$\Rightarrow{S}=\frac{\sqrt[{\mathrm{3}}]{\mathrm{3}}−\mathrm{3}\sqrt[{\mathrm{3}}]{\mathrm{3}}}{\left(\mathrm{1}−\sqrt[{\mathrm{3}}]{\mathrm{3}}\right)}=\frac{\sqrt[{\mathrm{3}}]{\mathrm{3}}\left(\mathrm{3}−\mathrm{1}\right)}{\:\sqrt[{\mathrm{3}}]{\mathrm{3}}−\mathrm{1}}=\frac{\mathrm{2}\sqrt[{\mathrm{3}}]{\mathrm{3}}}{\:\sqrt[{\mathrm{3}}]{\mathrm{3}}−\mathrm{1}} \\ $$$$\frac{\mathrm{6}}{\mathrm{3}+\sqrt[{\mathrm{3}}]{\mathrm{3}}+\sqrt[{\mathrm{3}}]{\mathrm{9}}}=\frac{\mathrm{6}}{\frac{\mathrm{2}\sqrt[{\mathrm{3}}]{\mathrm{3}}}{\:\sqrt[{\mathrm{3}}]{\mathrm{3}}−\mathrm{1}}}=\frac{\mathrm{6}\left(\sqrt[{\mathrm{3}}]{\mathrm{3}}−\mathrm{1}\right)}{\mathrm{2}\sqrt[{\mathrm{3}}]{\mathrm{3}}}=\sqrt[{\mathrm{3}}]{\mathrm{9}}\left(\sqrt[{\mathrm{3}}]{\mathrm{3}}−\mathrm{1}\right) \\ $$$$\frac{\mathrm{6}}{\mathrm{3}+\sqrt[{\mathrm{3}}]{\mathrm{3}}+\sqrt[{\mathrm{3}}]{\mathrm{9}}}=\mathrm{3}−\sqrt[{\mathrm{3}}]{\mathrm{9}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *