Menu Close

6-5-14-6-14-23-6-23-32-6-9n-4-9n-5-




Question Number 113593 by bemath last updated on 14/Sep/20
(6/(5×14))+(6/(14×23))+(6/(23×32))+...+(6/((9n−4)(9n+5)))=?
$$\frac{\mathrm{6}}{\mathrm{5}×\mathrm{14}}+\frac{\mathrm{6}}{\mathrm{14}×\mathrm{23}}+\frac{\mathrm{6}}{\mathrm{23}×\mathrm{32}}+…+\frac{\mathrm{6}}{\left(\mathrm{9}{n}−\mathrm{4}\right)\left(\mathrm{9}{n}+\mathrm{5}\right)}=? \\ $$
Commented by bemath last updated on 14/Sep/20
thank you both sir
$${thank}\:{you}\:{both}\:{sir} \\ $$
Answered by bobhans last updated on 14/Sep/20
(6/(5.14))+(6/(14.23))+(6/(23.32))+...+(6/((9n−4)(9n+5))) =  Σ_(k=1) ^n ((6/((9k−4)(9k+5))) = 6 × Σ_(k=1) ^n ((1/((9k−4)(9k+5))))  = 6×(1/9)((1/5)−(1/(9n+5)))  =(2/3)(((9n+5−5)/(5(9n+5)))) = ((6n)/(5(9n+5)))
$$\frac{\mathrm{6}}{\mathrm{5}.\mathrm{14}}+\frac{\mathrm{6}}{\mathrm{14}.\mathrm{23}}+\frac{\mathrm{6}}{\mathrm{23}.\mathrm{32}}+…+\frac{\mathrm{6}}{\left(\mathrm{9n}−\mathrm{4}\right)\left(\mathrm{9n}+\mathrm{5}\right)}\:= \\ $$$$\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\left(\frac{\mathrm{6}}{\left(\mathrm{9k}−\mathrm{4}\right)\left(\mathrm{9k}+\mathrm{5}\right.}\right)\:=\:\mathrm{6}\:×\:\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\left(\frac{\mathrm{1}}{\left(\mathrm{9k}−\mathrm{4}\right)\left(\mathrm{9k}+\mathrm{5}\right)}\right) \\ $$$$=\:\mathrm{6}×\frac{\mathrm{1}}{\mathrm{9}}\left(\frac{\mathrm{1}}{\mathrm{5}}−\frac{\mathrm{1}}{\mathrm{9n}+\mathrm{5}}\right) \\ $$$$=\frac{\mathrm{2}}{\mathrm{3}}\left(\frac{\mathrm{9n}+\mathrm{5}−\mathrm{5}}{\mathrm{5}\left(\mathrm{9n}+\mathrm{5}\right)}\right)\:=\:\frac{\mathrm{6n}}{\mathrm{5}\left(\mathrm{9n}+\mathrm{5}\right)} \\ $$
Answered by Dwaipayan Shikari last updated on 14/Sep/20
6Σ_(n=1) ^n (1/((9n−4)(9n+5)))  (2/3)Σ_(n=1) ^n (1/((9n−4)))−(1/((9n+5)))  (2/3)((1/5)−(1/(9n+5)))=((6n)/(5(9n+5)))
$$\mathrm{6}\underset{{n}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{9}{n}−\mathrm{4}\right)\left(\mathrm{9}{n}+\mathrm{5}\right)} \\ $$$$\frac{\mathrm{2}}{\mathrm{3}}\underset{{n}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{9}{n}−\mathrm{4}\right)}−\frac{\mathrm{1}}{\left(\mathrm{9}{n}+\mathrm{5}\right)} \\ $$$$\frac{\mathrm{2}}{\mathrm{3}}\left(\frac{\mathrm{1}}{\mathrm{5}}−\frac{\mathrm{1}}{\mathrm{9}{n}+\mathrm{5}}\right)=\frac{\mathrm{6}{n}}{\mathrm{5}\left(\mathrm{9}{n}+\mathrm{5}\right)} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *