Menu Close

6-5-24-23-54-53-96-95-150-149-216-215-294-293-




Question Number 117475 by Dwaipayan Shikari last updated on 11/Oct/20
(6/5).((24)/(23)).((54)/(53)).((96)/(95)).((150)/(149)).((216)/(215)).((294)/(293))....
$$\frac{\mathrm{6}}{\mathrm{5}}.\frac{\mathrm{24}}{\mathrm{23}}.\frac{\mathrm{54}}{\mathrm{53}}.\frac{\mathrm{96}}{\mathrm{95}}.\frac{\mathrm{150}}{\mathrm{149}}.\frac{\mathrm{216}}{\mathrm{215}}.\frac{\mathrm{294}}{\mathrm{293}}…. \\ $$
Answered by frc2crc last updated on 12/Oct/20
((sin πx)/(πx))=Π_(n=1) ^∞ (1−(x^2 /n^2 ))  ((πx)/(sin xπ))=Π_(n=1) ^∞ (n^2 /(n^2 −x^2 ))   x=1/a  (π/a)cosec (π/a)=Π_(n=1) ^∞ ((n^2 ×a^2 )/(n^2 ×a^2 −1))  ...
$$\frac{\mathrm{sin}\:\pi{x}}{\pi{x}}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{{n}^{\mathrm{2}} }\right) \\ $$$$\frac{\pi{x}}{\mathrm{sin}\:{x}\pi}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\frac{{n}^{\mathrm{2}} }{{n}^{\mathrm{2}} −{x}^{\mathrm{2}} }\:\:\:{x}=\mathrm{1}/{a} \\ $$$$\frac{\pi}{{a}}\mathrm{cosec}\:\frac{\pi}{{a}}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\frac{{n}^{\mathrm{2}} ×{a}^{\mathrm{2}} }{{n}^{\mathrm{2}} ×{a}^{\mathrm{2}} −\mathrm{1}} \\ $$$$… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *