Menu Close

6-log-16-x-4-3-2log-16-x-2-lt-2-




Question Number 84674 by jagoll last updated on 15/Mar/20
((6−log_(16)  (x^4 ))/(3+2log_(16) (x^2 ))) < 2
6log16(x4)3+2log16(x2)<2
Commented by jagoll last updated on 15/Mar/20
(i) x ≠ 0   ⇒ ((6−2log_(16)  (x^2 ))/(3+2log_(16) (x^2 ))) < 2  ⇒ ((3−log_(16) (x^2 ))/(3+2log_(16) (x^2 ))) < 1   let t = log_(16) (x^2 )  ((3−t)/(3+2t))−((3+2t)/(3+2t)) < 0   ((−3t)/(3+2t)) <0 ⇒ t<−(3/2) ∨t > 0  log_(16)  (x^2 ) < log_(16) (16)^(−(3/2))  ∨  log_(16)  (x^2 ) > log_(16)  (16)^0   x^2   < (1/(64)) ∨ x^2  > 1⇒ x<−1 ∨   −(1/8)<x<(1/8) ∨ x > 1
(i)x062log16(x2)3+2log16(x2)<23log16(x2)3+2log16(x2)<1lett=log16(x2)3t3+2t3+2t3+2t<03t3+2t<0t<32t>0log16(x2)<log16(16)32log16(x2)>log16(16)0x2<164x2>1x<118<x<18x>1

Leave a Reply

Your email address will not be published. Required fields are marked *