Menu Close

64-x-2-3-4-x-8-x-3-




Question Number 115238 by bemath last updated on 24/Sep/20
   64^(x^2 −(3/4)x)  ≤ ((√8))^x^3
64x234x(8)x3
Answered by Rasheed.Sindhi last updated on 24/Sep/20
64^(x^2 −(3/4)x)  ≤ ((√8))^x^3     (2^6 )^(x^2 −(3/4)x)  ≤ (2^(3/2) )^x^3     6x^2 −(9/2)x≤(3/2)x^3   12x^2 −9x≤3x^3   3x^3 −12x^2 +9x≥0  x(x^2 −4x+3)≥0     { ((x≥0 ∧ x^2 −4x+3≥0)),((                   ∨)),((x≤0 ∧ x^2 −4x+3≤0)) :}     { ((x≥0 ∧{(x−1)(x−3)}≥0)),((                   ∨)),((x≤0 ∧{(x−1)(x−3) }≤0)) :}     { ((x≥0 ∧ { ((x≥1 ∧ x≥3)),((          ∨)),((x≤1 ∧ x≤3)) :})),((                   ∨)),((x≤0 ∧ { ((x≤1 ∧ x≥3 )),((          ∨)),((x≥1 ∧ x≤3)) :})) :}
64x234x(8)x3(26)x234x(232)x36x292x32x312x29x3x33x312x2+9x0x(x24x+3)0{x0x24x+30x0x24x+30{x0{(x1)(x3)}0x0{(x1)(x3)}0{x0{x1x3x1x3x0{x1x3x1x3
Commented by bemath last updated on 24/Sep/20
gave kudos sir
gavekudossir
Answered by Olaf last updated on 24/Sep/20
x(x−1)(x−3) ≥ 0 (1)  ⇔ x∈[0;1]∪[3;+∞[  Then (1) : x(x^2 −4x+3) ≥ 0  x^3 −4x^2 +3x ≥ 0  4x^2 −3x ≤ x^3   (3/2)(4x^2 −3x) ≤ (3/2)x^3   6(x^2 −(3/4)x) ≤ (3/2)x^3   6ln2(x^2 −(3/4)x) ≤ ((3/2)ln2)x^3   (x^2 −(3/4)x)ln64 ≤ x^3 ln(√8)  ln64^(x^2 −(3/4)x)  ≤ ln((√8))^x^3    64^(x^2 −(3/4)x)  ≤( (√8))^x^3    S =  [0;1]∪[3;+∞[
x(x1)(x3)0(1)x[0;1][3;+[Then(1):x(x24x+3)0x34x2+3x04x23xx332(4x23x)32x36(x234x)32x36ln2(x234x)(32ln2)x3(x234x)ln64x3ln8ln64x234xln(8)x364x234x(8)x3S=[0;1][3;+[

Leave a Reply

Your email address will not be published. Required fields are marked *