Menu Close

6561-3-8-x-60-times-find-x-




Question Number 82881 by jagoll last updated on 25/Feb/20
  (√(√(...(√(6561))))) = 3^8^x   (60 times)  find x
$$ \\ $$$$\sqrt{\sqrt{…\sqrt{\mathrm{6561}}}}\:=\:\mathrm{3}^{\mathrm{8}^{\mathrm{x}} } \:\left(\mathrm{60}\:\mathrm{times}\right) \\ $$$$\mathrm{find}\:\mathrm{x} \\ $$
Commented by mr W last updated on 25/Feb/20
6561^(((1/2))^(60) ) =3^8^x    3^(8×(1/8^(20) )) =3^8^x    3^8^(−19)  =3^8^x    ⇒x=−19
$$\mathrm{6561}^{\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{60}} } =\mathrm{3}^{\mathrm{8}^{{x}} } \\ $$$$\mathrm{3}^{\mathrm{8}×\frac{\mathrm{1}}{\mathrm{8}^{\mathrm{20}} }} =\mathrm{3}^{\mathrm{8}^{{x}} } \\ $$$$\mathrm{3}^{\mathrm{8}^{−\mathrm{19}} } =\mathrm{3}^{\mathrm{8}^{{x}} } \\ $$$$\Rightarrow{x}=−\mathrm{19} \\ $$
Commented by jagoll last updated on 25/Feb/20
thank you
$$\mathrm{thank}\:\mathrm{you}\: \\ $$
Answered by john santu last updated on 25/Feb/20
(√(√(...(√(81))))) = 3^8^x   (59 times)  (√(√(...(√9)))) = 3^8^x   (58 times)  (√(√(...(√3)))) = 3^8^x   (57 times)  (...(3^(1/2) )^(1/2) ...)^(1/2) = 3^8^x    ⇒ (3^(((1/2))^(57) ) ) = 3^8^x    ⇒ 2^(−57)  = 8^x    ⇒ 2^(−57)  = 2^(3x)  ⇒ −57 = 3x  ∴ x = −19
$$\sqrt{\sqrt{…\sqrt{\mathrm{81}}}}\:=\:\mathrm{3}^{\mathrm{8}^{\mathrm{x}} } \:\left(\mathrm{59}\:\mathrm{times}\right) \\ $$$$\sqrt{\sqrt{…\sqrt{\mathrm{9}}}}\:=\:\mathrm{3}^{\mathrm{8}^{\mathrm{x}} } \:\left(\mathrm{58}\:\mathrm{times}\right) \\ $$$$\sqrt{\sqrt{…\sqrt{\mathrm{3}}}}\:=\:\mathrm{3}^{\mathrm{8}^{\mathrm{x}} } \:\left(\mathrm{57}\:\mathrm{times}\right) \\ $$$$\left(…\left(\mathrm{3}^{\frac{\mathrm{1}}{\mathrm{2}}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} …\right)^{\frac{\mathrm{1}}{\mathrm{2}}} =\:\mathrm{3}^{\mathrm{8}^{\mathrm{x}} } \\ $$$$\Rightarrow\:\left(\mathrm{3}^{\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{57}} } \right)\:=\:\mathrm{3}^{\mathrm{8}^{\mathrm{x}} } \\ $$$$\Rightarrow\:\mathrm{2}^{−\mathrm{57}} \:=\:\mathrm{8}^{\mathrm{x}} \: \\ $$$$\Rightarrow\:\mathrm{2}^{−\mathrm{57}} \:=\:\mathrm{2}^{\mathrm{3x}} \:\Rightarrow\:−\mathrm{57}\:=\:\mathrm{3x} \\ $$$$\therefore\:\mathrm{x}\:=\:−\mathrm{19} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *