Menu Close

7-2-




Question Number 108239 by Dwaipayan Shikari last updated on 15/Aug/20
((7/2))!=?
(72)!=?
Answered by abdomsup last updated on 15/Aug/20
Γ(x+n) =Γ(x+n−1 +1)  =(x+n−1)Γ(x+n−2 +1)  =(x+n−1)(x+n−2)Γ(x+n−2)  =(x+n−1)(x+n−2)(x+n−3)Γ(x+n−3)  ⇒((7/2))! =Γ((7/2)+1)  =Γ((1/2) +4)=((1/2) +3)((1/2)+2)((1/2)+1)Γ((1/2)+1)  =(7/2).(5/2).(3/2).(1/2)Γ((1/2))  =((35.3)/8)Γ((1/2)) =((105)/8)Γ((1/2))  Γ(x) =∫_0 ^∞  t^(x−1)  e^(−t )  dt ⇒  Γ((1/2))=∫_0 ^∞  (e^(−t) /( (√t)))dt =_(t=u^2 )  ∫_0 ^∞  (e^(−u^2 ) /u)(2u)du  =2∫_0 ^∞  e^(−u^2 ) du =2.((√π)/2)=(√π) ⇒  ((7/2))! =((105(√π))/8)
Γ(x+n)=Γ(x+n1+1)=(x+n1)Γ(x+n2+1)=(x+n1)(x+n2)Γ(x+n2)=(x+n1)(x+n2)(x+n3)Γ(x+n3)(72)!=Γ(72+1)=Γ(12+4)=(12+3)(12+2)(12+1)Γ(12+1)=72.52.32.12Γ(12)=35.38Γ(12)=1058Γ(12)Γ(x)=0tx1etdtΓ(12)=0ettdt=t=u20eu2u(2u)du=20eu2du=2.π2=π(72)!=105π8
Commented by abdomsup last updated on 15/Aug/20
sorry   ((7/2))! =((105(√π))/(16))
sorry(72)!=105π16
Commented by abdomsup last updated on 15/Aug/20
generaly  we have  Γ(x+n)=(x+n−1)(x+n−2)  ....(x+n−k)Γ(x+n−k)  k=n ⇒Γ(x+n)=(x+n−1)(x+n−2)  ......(x+1)xΓ(x)  ex     n=4 ⇒  Γ(x+4)=(x+3)(x+2)(x+1)Γ(x)  x=(1/m) ⇒Γ((1/m)+4)  =((1/(m+3)))((1/m)+2)((1/m)+1)(1/m)Γ((1/m))
generalywehaveΓ(x+n)=(x+n1)(x+n2).(x+nk)Γ(x+nk)k=nΓ(x+n)=(x+n1)(x+n2)(x+1)xΓ(x)exn=4Γ(x+4)=(x+3)(x+2)(x+1)Γ(x)x=1mΓ(1m+4)=(1m+3)(1m+2)(1m+1)1mΓ(1m)
Commented by abdomsup last updated on 15/Aug/20
error of typo  Γ((1/m)+4)=((1/m)+3)((1/m)+2)((1/m)+1)(1/m)Γ((1/m))
erroroftypoΓ(1m+4)=(1m+3)(1m+2)(1m+1)1mΓ(1m)
Commented by mathmax by abdo last updated on 15/Aug/20
Γ(x+4)=(x+3)(x+2)(x+1)xΓ(x)
Γ(x+4)=(x+3)(x+2)(x+1)xΓ(x)

Leave a Reply

Your email address will not be published. Required fields are marked *