Menu Close

7x-6-x-2-25-x-3-2-4-dx-




Question Number 35909 by ajfour last updated on 25/May/18
∫((7x−6)/((x^2 +25)(√((x−3)^2 +4)))) dx = ?
7x6(x2+25)(x3)2+4dx=?
Commented by tanmay.chaudhury50@gmail.com last updated on 26/May/18
this nut is hard to crack...i am fighting..hope  reach the destination to get it solved...
thisnutishardtocrackiamfighting..hopereachthedestinationtogetitsolved
Commented by rahul 19 last updated on 26/May/18
Yes sir !  If there is no ( 7x−6 ) in numerator  then it is cakewalk!
Yessir!Ifthereisno(7x6)innumeratorthenitiscakewalk!
Commented by prof Abdo imad last updated on 26/May/18
tbere is no cake ni chocolat in maths...
tbereisnocakenichocolatinmaths
Commented by abdo mathsup 649 cc last updated on 27/May/18
changement x−3=2sht give   I = ∫  ((7(3+2sht)−6)/({ (2sht+3)^2  +25}2 cht)) 2chtdt  I = ∫    ((14sht  +15)/({4sh^2 t +12sht  +34)))dt  = ∫   ((14((e^t −e^(−t) )/2) +15)/(4 (((e^t  −e^(−t) )/2))^2  +12 ((e^t  −e^(−t) )/2) +34))dt  = ∫   ((7e^t  −7 e^(−t)  +15)/(e^(2t)  +e^(−2t) −2 +6 e^t  −6 e^(−t)  +34))dt  =∫   ((7e^t  −7 e^(−t)  +15)/(e^(2t)  +e^(−2t)   +6 e^t  −6 e^(−t)   +32))dt changement  e^t  =x give  I = ∫  ((7x−(7/x) +15)/(x^2  +(1/x^2 ) +6x −(6/x) +32)) (dx/x)  = ∫    ((7x^2  +15x −7)/(x^4    +1 +6x^3  −6x +32x^2 ))dx  = ∫   ((7x^2  +15x −7)/(x^4  +6x^3  +32x^2  −6x +1))dx the roots of  polynom p(x)= x^4  +6x^3  +32 x^2  −6x +1 are  the complex  z_1  ∼ −3,093+4,853 i  z_2 ∼−3,093 −4,853 i =z_1 ^−   z_3  ∼ 0,093 +0,146 i  z_4  ∼0,093 −0,146 i= z_3 ^−   p(x) ∼ (z−_ z_1 )(x−z_1 ^− )(x−z_2 )(x −z_2 ^− )  ∼ (x^2   +2.3,093x+(√((3,093)^2  +(4,853)^2 ))).  ( x^2    +2.0,093 x +(√((0,093)^2  +(0,146)^2 )))   the value of this integral is obtained  after  decomposing the fraction  F(x) = ((7x^2  +15x −7)/(p(x))) at form  F(x) = ((ax+b)/(x^2  −2Re(z_1 )x +∣z_1 ∣^2 )) + ((cx+d)/(x^2  −2Re(z_2 )x +∣z_2 ∣^( ))  ....
changementx3=2shtgiveI=7(3+2sht)6{(2sht+3)2+25}2cht2chtdtI=14sht+15{4sh2t+12sht+34)dt=14etet2+154(etet2)2+12etet2+34dt=7et7et+15e2t+e2t2+6et6et+34dt=7et7et+15e2t+e2t+6et6et+32dtchangementet=xgiveI=7x7x+15x2+1x2+6x6x+32dxx=7x2+15x7x4+1+6x36x+32x2dx=7x2+15x7x4+6x3+32x26x+1dxtherootsofpolynomp(x)=x4+6x3+32x26x+1arethecomplexz13,093+4,853iz23,0934,853i=z1z30,093+0,146iz40,0930,146i=z3p(x)(zz1)(xz1)(xz2)(xz2)(x2+2.3,093x+(3,093)2+(4,853)2).(x2+2.0,093x+(0,093)2+(0,146)2)thevalueofthisintegralisobtainedafterdecomposingthefractionF(x)=7x2+15x7p(x)atformF(x)=ax+bx22Re(z1)x+z12+cx+dx22Re(z2)x+z2(.
Answered by tanmay.chaudhury50@gmail.com last updated on 26/May/18
    ∫((7x−6)/((x^2 +25)(√(x^2 −6x+13))))dx  let t^2 =((x^2 −6x+13)/(x^2 +25))  2lnt=ln(x^2 −6x+13)−ln(x^2 +25)  (2/t)dt={((2x−6)/((x^2 −6x+13)))−((2x)/(x^2 +25))}dx    (2/t)dt=((2x^3 +50x−6x^2 −150−2x^3 +12x^2 −26x)/((x^2 +25)(x^2 −6x+13)))dx       (2/t)dt=((6x^2 +24x−150)/((x^2 +25)(x^2 −6x+13)))dx  dx=(2/t)×(((x^2 +25)(x^2 −6x+13))/(6(x^2 +4x−25)))dt  ∫((7x−6)/((x^2 +25)(√(x^2 −6x+13))))(2/t)×(((x^2 +25)(x^2 −6x+13)/(6(x^2 +4x−25)))  contd puting value of t  ∫((7x−6)/((x^2 +25)(√(x^2 −6x+13))))×((2(√(x^2 +25)))/( (√(x^2 −6x+13))))×  (((x^2 +25)(x^2 −6x+13))/(6(x^2 +4x−25)))dx  (1/3)∫(((7x−6)(√(x^2 +25)))/(x^2 +4x−25))dx  contd
7x6(x2+25)x26x+13dxlett2=x26x+13x2+252lnt=ln(x26x+13)ln(x2+25)2tdt={2x6(x26x+13)2xx2+25}dx2tdt=2x3+50x6x21502x3+12x226x(x2+25)(x26x+13)dx2tdt=6x2+24x150(x2+25)(x26x+13)dxdx=2t×(x2+25)(x26x+13)6(x2+4x25)dt7x6(x2+25)x26x+132t×(x2+25)(x26x+136(x2+4x25)contdputingvalueoft7x6(x2+25)x26x+13×2x2+25x26x+13×(x2+25)(x26x+13)6(x2+4x25)dx13(7x6)x2+25x2+4x25dxcontd
Commented by ajfour last updated on 26/May/18
thanks for the attempt sir.
thanksfortheattemptsir.

Leave a Reply

Your email address will not be published. Required fields are marked *