Menu Close

8-A-number-can-be-expressed-as-a-terminating-decimal-if-the-denominator-has-factors-a-2-3-or-5-b-2-or-3-c-3-or-5-




Question Number 157724 by Ppmaurya last updated on 27/Oct/21
8.              A number can be expressed as a terminating decimal,if the denominator has factors :                    (a) 2,3 or 5                            (b) 2 or 3                    (c) 3 or 5                    (d) 2 or 5   9.          Given that : HCF of 2520 and 6600= 120, LCM of 2520 and 6600= 252×k, then the value of k is :                   (a) 165                   (b) 1625                   (c) 550                   (d) 600   10.         The decimal expansion of the rational number ((47)/(2^4 ×5^(3 ) )) will terminate after :                  (a) 3 places                  (b) 4 places                  (c) 5 places                  (d) 1 place   11.           The perimeter of two similar triangles ABC and LMN are 60 cm and 48 cm respectively . If LM = 8cm,then lenght of AB is :                  (a) 10 cm                  (b) 8 cm                  (c) 5 cm                  (d) 6 cm   12.            Ratio in which the line segment joining (1,−7) and (6,4) are divided by x-axis is given as:                       (a) 4 :7                       (b) 2 : 5                       (c) 7 : 4                       (d) 5 : 2   13.            119^2 − 111^2  is :                        (a) Prime number                        (b) Composite number                       ( c) An odd composite number                       (d)An odd prime number   14.            Side of square , whose diagonal is 16 cm is given by:                          (a) 6(√(2 )) cm                          (b) 4(√2) cm                          (c) 7(√(2 ))cm                           (d) 8(√(2  ))cm
$$\mathrm{8}.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{A}\:\mathrm{number}\:\mathrm{can}\:\mathrm{be}\:\mathrm{expressed}\:\mathrm{as}\:\mathrm{a}\:\mathrm{terminating}\:\mathrm{decimal},\mathrm{if}\:\mathrm{the}\:\mathrm{denominator}\:\mathrm{has}\:\mathrm{factors}\:: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{a}\right)\:\mathrm{2},\mathrm{3}\:\mathrm{or}\:\mathrm{5}\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{b}\right)\:\mathrm{2}\:\mathrm{or}\:\mathrm{3} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{c}\right)\:\mathrm{3}\:\mathrm{or}\:\mathrm{5} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{d}\right)\:\mathrm{2}\:\mathrm{or}\:\mathrm{5} \\ $$$$\:\mathrm{9}.\:\:\:\:\:\:\:\:\:\:\mathrm{Given}\:\mathrm{that}\::\:\mathrm{HCF}\:\mathrm{of}\:\mathrm{2520}\:\mathrm{and}\:\mathrm{6600}=\:\mathrm{120},\:\mathrm{LCM}\:\mathrm{of}\:\mathrm{2520}\:\mathrm{and}\:\mathrm{6600}=\:\mathrm{252}×{k},\:\mathrm{then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{k}\:\mathrm{is}\:: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{a}\right)\:\mathrm{165} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{b}\right)\:\mathrm{1625} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{c}\right)\:\mathrm{550} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{d}\right)\:\mathrm{600} \\ $$$$\:\mathrm{10}.\:\:\:\:\:\:\:\:\:\mathrm{The}\:\mathrm{decimal}\:\mathrm{expansion}\:\mathrm{of}\:\mathrm{the}\:\mathrm{rational}\:\mathrm{number}\:\frac{\mathrm{47}}{\mathrm{2}^{\mathrm{4}} ×\mathrm{5}^{\mathrm{3}\:} }\:\mathrm{will}\:\mathrm{terminate}\:\mathrm{after}\:: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{a}\right)\:\mathrm{3}\:\mathrm{places} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{b}\right)\:\mathrm{4}\:\mathrm{places} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{c}\right)\:\mathrm{5}\:\mathrm{places} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{d}\right)\:\mathrm{1}\:\mathrm{place} \\ $$$$\:\mathrm{11}.\:\:\:\:\:\:\:\:\:\:\:\mathrm{The}\:\mathrm{perimeter}\:\mathrm{of}\:\mathrm{two}\:\mathrm{similar}\:\mathrm{triangles}\:\mathrm{ABC}\:\mathrm{and}\:\mathrm{LMN}\:\mathrm{are}\:\mathrm{60}\:\mathrm{cm}\:\mathrm{and}\:\mathrm{48}\:\mathrm{cm}\:\mathrm{respectively}\:.\:\mathrm{If}\:\mathrm{LM}\:=\:\mathrm{8cm},\mathrm{then}\:\mathrm{lenght}\:\mathrm{of}\:\mathrm{AB}\:\mathrm{is}\:: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{a}\right)\:\mathrm{10}\:\mathrm{cm} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{b}\right)\:\mathrm{8}\:\mathrm{cm} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{c}\right)\:\mathrm{5}\:\mathrm{cm} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{d}\right)\:\mathrm{6}\:\mathrm{cm} \\ $$$$\:\mathrm{12}.\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Ratio}\:\mathrm{in}\:\mathrm{which}\:\mathrm{the}\:\mathrm{line}\:\mathrm{segment}\:\mathrm{joining}\:\left(\mathrm{1},−\mathrm{7}\right)\:\mathrm{and}\:\left(\mathrm{6},\mathrm{4}\right)\:\mathrm{are}\:\mathrm{divided}\:\mathrm{by}\:\mathrm{x}-\mathrm{axis}\:\mathrm{is}\:\mathrm{given}\:\mathrm{as}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{a}\right)\:\mathrm{4}\::\mathrm{7} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{b}\right)\:\mathrm{2}\::\:\mathrm{5} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{c}\right)\:\mathrm{7}\::\:\mathrm{4} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{d}\right)\:\mathrm{5}\::\:\mathrm{2} \\ $$$$\:\mathrm{13}.\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{119}^{\mathrm{2}} −\:\mathrm{111}^{\mathrm{2}} \:\mathrm{is}\:: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{a}\right)\:\mathrm{Prime}\:\mathrm{number} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{b}\right)\:\mathrm{Composite}\:\mathrm{number} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\:\mathrm{c}\right)\:\mathrm{An}\:\mathrm{odd}\:\mathrm{composite}\:\mathrm{number} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{d}\right)\mathrm{An}\:\mathrm{odd}\:\mathrm{prime}\:\mathrm{number} \\ $$$$\:\mathrm{14}.\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Side}\:\mathrm{of}\:\mathrm{square}\:,\:\mathrm{whose}\:\mathrm{diagonal}\:\mathrm{is}\:\mathrm{16}\:\mathrm{cm}\:\mathrm{is}\:\mathrm{given}\:\mathrm{by}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{a}\right)\:\mathrm{6}\sqrt{\mathrm{2}\:}\:\mathrm{cm} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{b}\right)\:\mathrm{4}\sqrt{\mathrm{2}}\:\mathrm{cm} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{c}\right)\:\mathrm{7}\sqrt{\mathrm{2}\:}\mathrm{cm} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{d}\right)\:\mathrm{8}\sqrt{\mathrm{2}\:\:}\mathrm{cm} \\ $$$$\: \\ $$
Commented by Rasheed.Sindhi last updated on 27/Oct/21
One question for one One post please!
$$\mathrm{One}\:\mathrm{question}\:\mathrm{for}\:\mathrm{one}\:\mathrm{One}\:\mathrm{post}\:\mathrm{please}! \\ $$
Commented by mr W last updated on 27/Oct/21
and please NOT  in one single line!
$${and}\:{please}\:{NOT}\:\:{in}\:{one}\:{single}\:{line}! \\ $$
Answered by Kunal12588 last updated on 27/Oct/21
8.(d) 2 or 5  9.(c) 550  10.(b) 4 places  11.(a) 10 cm  12.(a) or (c) 4:7 or 7:4  13.(b) composite number  14.(b) 4(√2)
$$\mathrm{8}.\left({d}\right)\:\mathrm{2}\:{or}\:\mathrm{5} \\ $$$$\mathrm{9}.\left({c}\right)\:\mathrm{550} \\ $$$$\mathrm{10}.\left({b}\right)\:\mathrm{4}\:{places} \\ $$$$\mathrm{11}.\left({a}\right)\:\mathrm{10}\:{cm} \\ $$$$\mathrm{12}.\left({a}\right)\:{or}\:\left({c}\right)\:\mathrm{4}:\mathrm{7}\:{or}\:\mathrm{7}:\mathrm{4} \\ $$$$\mathrm{13}.\left({b}\right)\:{composite}\:{number} \\ $$$$\mathrm{14}.\left({b}\right)\:\mathrm{4}\sqrt{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *