Question Number 95159 by i jagooll last updated on 23/May/20
$$\sqrt[{\mathrm{3}\:\:}]{\mathrm{8}−\mathrm{x}}\:+\:\sqrt{\mathrm{x}}\:=\:\mathrm{2}\: \\ $$
Commented by hknkrc46 last updated on 23/May/20
$$\bigstar\:\sqrt[{\mathrm{2}{n}+\mathrm{1}}]{{f}\left({x}\right)}\:\Rightarrow\:\forall{f}\left({x}\right)\:\in\:\mathbb{R}\:\rightarrow\:{f}\left({x}\right)\geqslant\mathrm{0}\:\vee\:{f}\left({x}\right)\leqslant\mathrm{0} \\ $$$$\bigstar\sqrt[{\mathrm{2}{n}}]{{f}\left({x}\right)}\:\Rightarrow\:\forall{f}\left({x}\right)\:\in\:\mathbb{R}^{+} \:\rightarrow\:{f}\left({x}\right)\geqslant\mathrm{0} \\ $$$$\bigstar\:\sqrt[{\mathrm{2}}]{{f}\left({x}\right)}=\sqrt{{f}\left({x}\right)} \\ $$$$\bullet\:{x}\geqslant\mathrm{0} \\ $$$$\bigstar\:{m}\neq{k}\:,\:{h}={ekok}\left({m},{k}\right)={lcm}\left({m},{k}\right) \\ $$$$\sqrt[{{m}}]{{f}\left({x}\right)}+\sqrt[{{k}}]{{g}\left({x}\right)}={t}\:\Rightarrow\:{f}\left({x}\right)={q}^{{h}} \: \\ $$$$\bullet\:{h}={ekok}\left(\mathrm{3},\mathrm{2}\right)=\mathrm{6} \\ $$$$\bullet{f}\left({x}\right)=\mathrm{8}−{x}={q}^{\mathrm{6}} \\ $$$$\bullet\:\sqrt[{\mathrm{3}\:\:}]{\mathrm{8}−{x}}\:+\:\sqrt{{x}}\:={q}^{\mathrm{2}} +\sqrt{\mathrm{8}−{q}^{\mathrm{6}} }=\mathrm{2} \\ $$$$\bullet\:\sqrt{\mathrm{8}−{q}^{\mathrm{6}} }=\mathrm{2}−{q}^{\mathrm{2}} \\ $$$$\bullet\:\mathrm{8}−{q}^{\mathrm{6}} =\left(\mathrm{2}−{q}^{\mathrm{2}} \right)^{\mathrm{2}} ={q}^{\mathrm{4}} −\mathrm{4}{q}^{\mathrm{2}} +\mathrm{4} \\ $$$$\bullet\:{q}^{\mathrm{6}} +{q}^{\mathrm{4}} −\mathrm{4}{q}^{\mathrm{2}} −\mathrm{4}=\mathrm{0} \\ $$$$\bullet\:{q}^{\mathrm{2}} \left({q}^{\mathrm{4}} −\mathrm{4}\right)+{q}^{\mathrm{4}} −\mathrm{4}=\left({q}^{\mathrm{2}} +\mathrm{1}\right)\left({q}^{\mathrm{4}} −\mathrm{4}\right) \\ $$$$=\left({q}^{\mathrm{2}} +\mathrm{1}\right)\left({q}^{\mathrm{2}} −\mathrm{2}\right)\left({q}^{\mathrm{2}} +\mathrm{2}\right)\Rightarrow{q}=\pm\sqrt{\mathrm{2}}\:,\pm{i}\sqrt{\mathrm{2}}\:,\:\pm{i} \\ $$$$\bullet\:\mathrm{8}−{x}=\left(\pm\sqrt{\mathrm{2}}\right)^{\mathrm{6}} =\mathrm{8}\:\Rightarrow\:{x}=\mathrm{0} \\ $$$$\bullet\:\mathrm{8}−{x}=\left(\pm{i}\sqrt{\mathrm{2}}\right)^{\mathrm{6}} =−\mathrm{8}\:\Rightarrow\:{x}=\mathrm{16} \\ $$$$\bullet\:\mathrm{8}−{x}=\left(\pm{i}\right)^{\mathrm{6}} =−\mathrm{1}\:\Rightarrow\:{x}=\mathrm{9} \\ $$$$ \\ $$
Answered by bobhans last updated on 23/May/20
$$\sqrt[{\mathrm{3}\:\:}]{\mathrm{8}−{x}}\:=\:\mathrm{2}−\sqrt{{x}}\:\Rightarrow\:\mathrm{8}−{x}\:=\mathrm{8}−\mathrm{12}\sqrt{{x}}\:+\mathrm{6}{x}−{x}\sqrt{{x}}\: \\ $$$${x}\sqrt{{x}}\:+\mathrm{12}\sqrt{{x}}\:−\mathrm{7}{x}\:=\:\mathrm{0} \\ $$$$\sqrt{{x}}\:\left({x}+\mathrm{12}−\mathrm{7}\sqrt{{x}}\:\right)\:=\:\mathrm{0} \\ $$$$\sqrt{{x}}\:\left(\sqrt{{x}}−\mathrm{3}\right)\left(\sqrt{{x}}−\mathrm{4}\:\right)\:=\:\mathrm{0}\:\Rightarrow\begin{cases}{{x}=\mathrm{0}}\\{{x}=\mathrm{9}}\\{{x}=\mathrm{16}}\end{cases} \\ $$