Menu Close

8-x-27-x-12-x-18-x-7-6-x-




Question Number 92242 by john santu last updated on 05/May/20
((8^x +27^x )/(12^x +18^x )) = (7/6)   x = ?
$$\frac{\mathrm{8}^{{x}} +\mathrm{27}^{{x}} }{\mathrm{12}^{{x}} +\mathrm{18}^{{x}} }\:=\:\frac{\mathrm{7}}{\mathrm{6}}\: \\ $$$${x}\:=\:? \\ $$
Commented by john santu last updated on 05/May/20
set 2^x  = u ∧ 3^x  = v   ((u^3 +v^3 )/(uv(u+v))) = (((u+v)(u^2 −uv+v^2 ))/(uv)) = (7/6)  (u/v)−1+(v/u) = (7/6)  let (u/v) = t ⇒ t+(1/t)−((13)/6) =0  6t^2 −13t+6 =0   { ((t = (2/3) = (u/v)⇒ 2v = 3u)),((t = (3/2) = (u/v)⇒ 2u=3v)) :}
$$\mathrm{set}\:\mathrm{2}^{\mathrm{x}} \:=\:\mathrm{u}\:\wedge\:\mathrm{3}^{\mathrm{x}} \:=\:\mathrm{v}\: \\ $$$$\frac{\mathrm{u}^{\mathrm{3}} +\mathrm{v}^{\mathrm{3}} }{\mathrm{uv}\left(\mathrm{u}+\mathrm{v}\right)}\:=\:\frac{\left(\mathrm{u}+\mathrm{v}\right)\left(\mathrm{u}^{\mathrm{2}} −\mathrm{uv}+\mathrm{v}^{\mathrm{2}} \right)}{\mathrm{uv}}\:=\:\frac{\mathrm{7}}{\mathrm{6}} \\ $$$$\frac{\mathrm{u}}{\mathrm{v}}−\mathrm{1}+\frac{\mathrm{v}}{\mathrm{u}}\:=\:\frac{\mathrm{7}}{\mathrm{6}} \\ $$$$\mathrm{let}\:\frac{\mathrm{u}}{\mathrm{v}}\:=\:\mathrm{t}\:\Rightarrow\:\mathrm{t}+\frac{\mathrm{1}}{\mathrm{t}}−\frac{\mathrm{13}}{\mathrm{6}}\:=\mathrm{0} \\ $$$$\mathrm{6t}^{\mathrm{2}} −\mathrm{13t}+\mathrm{6}\:=\mathrm{0} \\ $$$$\begin{cases}{\mathrm{t}\:=\:\frac{\mathrm{2}}{\mathrm{3}}\:=\:\frac{\mathrm{u}}{\mathrm{v}}\Rightarrow\:\mathrm{2v}\:=\:\mathrm{3u}}\\{\mathrm{t}\:=\:\frac{\mathrm{3}}{\mathrm{2}}\:=\:\frac{\mathrm{u}}{\mathrm{v}}\Rightarrow\:\mathrm{2u}=\mathrm{3v}}\end{cases} \\ $$$$ \\ $$
Commented by john santu last updated on 05/May/20
case(1) 2.3^x  = 3.2^x    ((3/2))^x  = ((3/2))^1 ⇒ x = 1  case(2) 2.2^x  = 3.3^x   ((2/3))^x  = ((2/3))^(−1)  ⇒ x = −1
$$\mathrm{case}\left(\mathrm{1}\right)\:\mathrm{2}.\mathrm{3}^{\mathrm{x}} \:=\:\mathrm{3}.\mathrm{2}^{\mathrm{x}} \: \\ $$$$\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{x}} \:=\:\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{1}} \Rightarrow\:{x}\:=\:\mathrm{1} \\ $$$$\mathrm{case}\left(\mathrm{2}\right)\:\mathrm{2}.\mathrm{2}^{\mathrm{x}} \:=\:\mathrm{3}.\mathrm{3}^{\mathrm{x}} \\ $$$$\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{x}} \:=\:\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{−\mathrm{1}} \:\Rightarrow\:{x}\:=\:−\mathrm{1}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *