Menu Close

8cos-4-x-8cos-2-x-1-0-solution-8cos-2-x-cos-2-x-1-1-0-8cos-2-xsin-2-x-1-sin-2-2x-1-2-sinx-2-2-2x-2kpi-pi-4-2x-2kpi-3pi-4-2x-2kpi-pi-4-2x-2kpi-5pi-4-and




Question Number 25961 by kaivan.ahmadi last updated on 16/Dec/17
8cos^4 x−8cos^2 x+1=0  solution:8cos^2 x(cos^2 x−1)+1=0⇒  −8cos^2 xsin^2 x=−1⇒  sin^2 2x=(1/2)⇒sinx=+_− ((√2)/2)⇒   { ((2x=2kπ+(π/4))),((2x=2kπ+((3π)/4))) :}   { ((2x=2kπ−(π/4))),((2x=2kπ+((5π)/4))) :}  and so we have   { ((x=kπ+(π/8))),((x=kπ+((3π)/8))) :}   { ((x=kπ−(π/8))),((x=kπ+((5π)/8))) :}  why x=((kπ)/4)+(π/8)?    can we solve by another way?
$$\mathrm{8cos}^{\mathrm{4}} \mathrm{x}−\mathrm{8cos}^{\mathrm{2}} \mathrm{x}+\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{solution}:\mathrm{8cos}^{\mathrm{2}} \mathrm{x}\left(\mathrm{cos}^{\mathrm{2}} \mathrm{x}−\mathrm{1}\right)+\mathrm{1}=\mathrm{0}\Rightarrow \\ $$$$−\mathrm{8cos}^{\mathrm{2}} \mathrm{xsin}^{\mathrm{2}} \mathrm{x}=−\mathrm{1}\Rightarrow \\ $$$$\mathrm{sin}^{\mathrm{2}} \mathrm{2x}=\frac{\mathrm{1}}{\mathrm{2}}\Rightarrow\mathrm{sinx}=\underset{−} {+}\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\Rightarrow \\ $$$$\begin{cases}{\mathrm{2x}=\mathrm{2k}\pi+\frac{\pi}{\mathrm{4}}}\\{\mathrm{2x}=\mathrm{2k}\pi+\frac{\mathrm{3}\pi}{\mathrm{4}}}\end{cases} \\ $$$$\begin{cases}{\mathrm{2x}=\mathrm{2k}\pi−\frac{\pi}{\mathrm{4}}}\\{\mathrm{2x}=\mathrm{2k}\pi+\frac{\mathrm{5}\pi}{\mathrm{4}}}\end{cases} \\ $$$$\mathrm{and}\:\mathrm{so}\:\mathrm{we}\:\mathrm{have} \\ $$$$\begin{cases}{\mathrm{x}=\mathrm{k}\pi+\frac{\pi}{\mathrm{8}}}\\{\mathrm{x}=\mathrm{k}\pi+\frac{\mathrm{3}\pi}{\mathrm{8}}}\end{cases} \\ $$$$\begin{cases}{\mathrm{x}=\mathrm{k}\pi−\frac{\pi}{\mathrm{8}}}\\{\mathrm{x}=\mathrm{k}\pi+\frac{\mathrm{5}\pi}{\mathrm{8}}}\end{cases} \\ $$$$\mathrm{why}\:\mathrm{x}=\frac{\mathrm{k}\pi}{\mathrm{4}}+\frac{\pi}{\mathrm{8}}? \\ $$$$ \\ $$$$\mathrm{can}\:\mathrm{we}\:\mathrm{solve}\:\mathrm{by}\:\mathrm{another}\:\mathrm{way}? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *