Menu Close

8sin-x-3-cos-x-1-sin-x-x-




Question Number 147640 by mathdanisur last updated on 22/Jul/21
8sin(x) = ((√3)/(cos(x))) + (1/(sin(x)))  ⇒ x=?
$$\mathrm{8}{sin}\left({x}\right)\:=\:\frac{\sqrt{\mathrm{3}}}{{cos}\left({x}\right)}\:+\:\frac{\mathrm{1}}{{sin}\left({x}\right)}\:\:\Rightarrow\:{x}=? \\ $$
Answered by gsk2684 last updated on 25/Jul/21
8 sin^2 x cos x = (√3) sin x + cos x  4 sin 2x sin x = (√3) sin x + cos x  2(2 sin 2x sin x )= (√3) sin x + cos x  2(cos x − cos 3x )= (√3) sin x + cos x  cos x −  (√3) sin x = 2 cos 3x  (1/2)cos x − ((√3)/2)sin x = cos 3x  cos ((π/3)+x)=cos 3x  (π/3)+x=2kπ±3x where k∈Z  (π/3)+x=2kπ+3x  or  (π/3)+x=2kπ−3x   −2x=2kπ−(π/3) or 4x=2kπ−(π/3)  x=−kπ+(π/6) or ((kπ)/2)−(π/(12)) , k∈Z  x=kπ+(π/6) or ((kπ)/2)−(π/(12)) , k∈Z
$$\mathrm{8}\:\mathrm{sin}\:^{\mathrm{2}} {x}\:\mathrm{cos}\:{x}\:=\:\sqrt{\mathrm{3}}\:\mathrm{sin}\:{x}\:+\:\mathrm{cos}\:{x} \\ $$$$\mathrm{4}\:\mathrm{sin}\:\mathrm{2}{x}\:\mathrm{sin}\:{x}\:=\:\sqrt{\mathrm{3}}\:\mathrm{sin}\:{x}\:+\:\mathrm{cos}\:{x} \\ $$$$\mathrm{2}\left(\mathrm{2}\:\mathrm{sin}\:\mathrm{2}{x}\:\mathrm{sin}\:{x}\:\right)=\:\sqrt{\mathrm{3}}\:\mathrm{sin}\:{x}\:+\:\mathrm{cos}\:{x} \\ $$$$\mathrm{2}\left(\mathrm{cos}\:{x}\:−\:\mathrm{cos}\:\mathrm{3}{x}\:\right)=\:\sqrt{\mathrm{3}}\:\mathrm{sin}\:{x}\:+\:\mathrm{cos}\:{x} \\ $$$$\mathrm{cos}\:{x}\:−\:\:\sqrt{\mathrm{3}}\:\mathrm{sin}\:{x}\:=\:\mathrm{2}\:\mathrm{cos}\:\mathrm{3}{x} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}\:{x}\:−\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{sin}\:{x}\:=\:\mathrm{cos}\:\mathrm{3}{x} \\ $$$$\mathrm{cos}\:\left(\frac{\pi}{\mathrm{3}}+{x}\right)=\mathrm{cos}\:\mathrm{3}{x} \\ $$$$\frac{\pi}{\mathrm{3}}+{x}=\mathrm{2}{k}\pi\pm\mathrm{3}{x}\:{where}\:{k}\in{Z} \\ $$$$\frac{\pi}{\mathrm{3}}+{x}=\mathrm{2}{k}\pi+\mathrm{3}{x}\:\:{or}\:\:\frac{\pi}{\mathrm{3}}+{x}=\mathrm{2}{k}\pi−\mathrm{3}{x}\: \\ $$$$−\mathrm{2}{x}=\mathrm{2}{k}\pi−\frac{\pi}{\mathrm{3}}\:{or}\:\mathrm{4}{x}=\mathrm{2}{k}\pi−\frac{\pi}{\mathrm{3}} \\ $$$${x}=−{k}\pi+\frac{\pi}{\mathrm{6}}\:{or}\:\frac{{k}\pi}{\mathrm{2}}−\frac{\pi}{\mathrm{12}}\:,\:{k}\in{Z} \\ $$$${x}={k}\pi+\frac{\pi}{\mathrm{6}}\:{or}\:\frac{{k}\pi}{\mathrm{2}}−\frac{\pi}{\mathrm{12}}\:,\:{k}\in{Z} \\ $$
Commented by mathdanisur last updated on 22/Jul/21
Thank you Sir
$${Thank}\:{you}\:{Sir} \\ $$
Commented by mathdanisur last updated on 25/Jul/21
thankyou Sir
$${thankyou}\:{Sir} \\ $$
Commented by mathdanisur last updated on 23/Jul/21
answer (π/6) + πk
$${answer}\:\frac{\pi}{\mathrm{6}}\:+\:\pi{k} \\ $$
Commented by gsk2684 last updated on 25/Jul/21
i wrote general solution now
$${i}\:{wrote}\:{general}\:{solution}\:{now} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *