Menu Close

a-1-1-a-2-1-and-a-n-a-n-1-2a-n-2-Find-a-n-




Question Number 164956 by Jamshidbek last updated on 24/Jan/22
a_1 =1 a_2 =−1  and  a_n =−a_(n−1) −2a_(n−2)   Find  a_n
a1=1a2=1andan=an12an2Findan
Answered by mr W last updated on 24/Jan/22
1,−1,0,1,−1,0,1,−1,0,...  through “observation”:  ⇒a_(3n) =0  ⇒a_(3n+1) =1  ⇒a_(3n+2) =−1    general method:  r^2 +r+2=0  r=((−1±i(√3))/2)=−e^(±((πi)/3))   a_n =(−1)^n {Ae^((nπi)/3) +Be^(−((nπi)/3)) }  a_2 =−a_1 −2a_0  ⇒−1=−1−2a_0  ⇒a_0 =0  a_0 =A+B=0  a_1 =−{A((1+i(√3))/2)+B((1−i(√3))/2)}=1  A{((1+i(√3))/2)−((1−i(√3))/2)}=−1  A=(i/( (√3)))=(1/( (√3)))e^((πi)/2) =−B  a_n =(((−1)^n )/( (√3))){e^(((nπi)/3)+((πi)/2)) −e^(−((nπi)/3)+((πi)/2)) }  a_n =(((−1)^n )/( (√3))){cos (((nπ)/3)+(π/2))−cos (−((nπ)/3)+(π/2))+i [sin (((nπ)/3)+(π/2))−sin (−((nπ)/3)+(π/2))]}  a_n =(((−1)^n )/( (√3))){−2sin (((nπ)/3))+i [cos (((nπ)/3))−cos (((nπ)/3))}  a_n =(((−1)^(n+1) 2 sin (((nπ)/3)))/( (√3)))
1,1,0,1,1,0,1,1,0,throughobservation:a3n=0a3n+1=1a3n+2=1generalmethod:r2+r+2=0r=1±i32=e±πi3an=(1)n{Aenπi3+Benπi3}a2=a12a01=12a0a0=0a0=A+B=0a1={A1+i32+B1i32}=1A{1+i321i32}=1A=i3=13eπi2=Ban=(1)n3{enπi3+πi2enπi3+πi2}an=(1)n3{cos(nπ3+π2)cos(nπ3+π2)+i[sin(nπ3+π2)sin(nπ3+π2)]}an=(1)n3{2sin(nπ3)+i[cos(nπ3)cos(nπ3)}an=(1)n+12sin(nπ3)3
Commented by solihin last updated on 24/Jan/22
    how′d  you  got  the  a_(3n) ?
howdyougotthea3n?
Commented by solihin last updated on 24/Jan/22
i  mean  the  sequence
imeanthesequence
Commented by mr W last updated on 24/Jan/22
with a_1 =1, a_2 =−1 and a_n =−a_(n−1) −2a_(n−2)   you get  a_3 =0  a_4 =1  a_5 =−1  a_6 =0  a_7 =1  a_8 =−1  a_9 =0  ....  then you can see  a_(3n) =0  a_(3n+1) =1  a_(3n+2) =−1  this is not an “exact” method. it  is based on “observation”.  therefore i have given a second and  more general method.
witha1=1,a2=1andan=an12an2yougeta3=0a4=1a5=1a6=0a7=1a8=1a9=0.thenyoucanseea3n=0a3n+1=1a3n+2=1thisisnotanexactmethod.itisbasedonobservation.thereforeihavegivenasecondandmoregeneralmethod.
Commented by Tawa11 last updated on 24/Jan/22
Great sir.
Greatsir.
Commented by Jamshidbek last updated on 25/Jan/22
Mistake
Mistake
Commented by mr W last updated on 25/Jan/22
you should be more clear sir! what do  you mean? is there a mistake in the  question or is there a mistake in my  solution or what else?
youshouldbemoreclearsir!whatdoyoumean?isthereamistakeinthequestionoristhereamistakeinmysolutionorwhatelse?
Commented by aleks041103 last updated on 25/Jan/22
I think that you can also prove this  by induction.
Ithinkthatyoucanalsoprovethisbyinduction.

Leave a Reply

Your email address will not be published. Required fields are marked *