Menu Close

A-1-2018-1-2019-1-2050-find-the-integer-part-of-1-A-




Question Number 178777 by mr W last updated on 21/Oct/22
A=(1/(2018))+(1/(2019))+...+(1/(2050))  find the integer part of (1/A).
A=12018+12019++12050findtheintegerpartof1A.
Commented by Frix last updated on 21/Oct/22
(1/A) should be close to ((2018+2050)/(2×33))=61.6363...  ⇒ answer should be 61
1Ashouldbecloseto2018+20502×33=61.6363answershouldbe61
Commented by mr W last updated on 21/Oct/22
how is (1/A) close to ((2018+2050)/(2×33))?  we need strict proof.
howis1Acloseto2018+20502×33?weneedstrictproof.
Commented by Mathematification last updated on 21/Oct/22
Workings please
Workingsplease
Commented by Frix last updated on 22/Oct/22
it′s just an idea...  A=(1/n)+(1/(n+1))+...+(1/(n+k−1))  ⇒  (k/A) is the harmonic mean of {n, n+1, ..., n+k−1}  if q=((n+k−1)/n) is close to 1 ⇔ n is big enough and  k is not too big (k/A) is very close to ((n+(n+k−1))/2)  I cannot prove this. just tried these:  n=10; k=10; q=1.9; (k/A)≈13.91; ((10+19)/2)=14.5 good  n=100; k=10; q=1.09; (k/A)≈104.42; ((100+109)/2)=104.5 better  n=10; k=100; q=10.9; (k/A)≈40.91; ((10+109)/2)=59.5 bad  so I guessed that with  n=2018; k=33; q=1.016 we′d get (k/A) close  to ((2018+2050)/2)=2034 and (1/A) close to ((2034)/(33))  which is ≈61.64
itsjustanideaA=1n+1n+1++1n+k1kAistheharmonicmeanof{n,n+1,,n+k1}ifq=n+k1niscloseto1nisbigenoughandkisnottoobigkAisverycloseton+(n+k1)2Icannotprovethis.justtriedthese:n=10;k=10;q=1.9;kA13.91;10+192=14.5goodn=100;k=10;q=1.09;kA104.42;100+1092=104.5bettern=10;k=100;q=10.9;kA40.91;10+1092=59.5badsoIguessedthatwithn=2018;k=33;q=1.016wedgetkAcloseto2018+20502=2034and1Acloseto203433whichis61.64
Commented by mr W last updated on 22/Oct/22
thanks for the explanation sir!
thanksfortheexplanationsir!
Commented by Tawa11 last updated on 22/Oct/22
Great sir
Greatsir
Answered by mr W last updated on 22/Oct/22
A=((1/(2018))+(1/(2019))+...+(1/(2035)))_(18 numbers) +((1/(2036))+...+(1/(2050)))_(15 numbers)   A>((18)/(2035))+((15)/(2050))=((15×2035+18×2050)/(2050×2035))   ⇒(1/A)<((2050×2035)/(15×2035+18×2050))=((166870)/(2697))            <((167214)/(2697))=62    A=(1/(2018))+(1/(2019))+...+(1/(2050))_(33 numbers)   A<((33)/(2018))   ⇒(1/A)>((2018)/(33))>((2013)/(33))=61    since 61<(1/A)<62, the integer part of  (1/A) is 61.
A=(12018+12019++12035)18numbers+(12036++12050)15numbersA>182035+152050=15×2035+18×20502050×20351A<2050×203515×2035+18×2050=1668702697<1672142697=62A=12018+12019++1205033numbersA<3320181A>201833>201333=61since61<1A<62,theintegerpartof1Ais61.

Leave a Reply

Your email address will not be published. Required fields are marked *