Menu Close

a-1-3-b-1-3-1-b-a-s-3-s-2-a-2-1-3-2-s-ab-1-3-b-2-1-3-what-is-s-




Question Number 115436 by frc2crc last updated on 25/Sep/20
(√((a)^(1/3) +(b)^(1/3) ))=(1/( (√(b−a×s^3 ))))(((−s^2 ×(a^2 )^(1/3) )/2)+s((ab))^(1/3) +(b^2 )^(1/3) )  what is s?
$$\sqrt{\sqrt[{\mathrm{3}}]{{a}}+\sqrt[{\mathrm{3}}]{{b}}}=\frac{\mathrm{1}}{\:\sqrt{{b}−{a}×{s}^{\mathrm{3}} }}\left(\frac{−{s}^{\mathrm{2}} ×\sqrt[{\mathrm{3}}]{{a}^{\mathrm{2}} }}{\mathrm{2}}+{s}\sqrt[{\mathrm{3}}]{{ab}}+\sqrt[{\mathrm{3}}]{{b}^{\mathrm{2}} }\right) \\ $$$${what}\:{is}\:{s}? \\ $$
Answered by MJS_new last updated on 25/Sep/20
not easy to solve  I′m too tired to type the path  s=−1−((√(u^2 −uv+v^2 ))/u)+((√((u+v)(2u−v+2(√(u^2 −uv+v^2 )))))/u)  with u=(a)^(1/3) ∧v=(b)^(1/3)   true only for a,b ≥0 and all roots ∈R
$$\mathrm{not}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{solve} \\ $$$$\mathrm{I}'\mathrm{m}\:\mathrm{too}\:\mathrm{tired}\:\mathrm{to}\:\mathrm{type}\:\mathrm{the}\:\mathrm{path} \\ $$$${s}=−\mathrm{1}−\frac{\sqrt{{u}^{\mathrm{2}} −{uv}+{v}^{\mathrm{2}} }}{{u}}+\frac{\sqrt{\left({u}+{v}\right)\left(\mathrm{2}{u}−{v}+\mathrm{2}\sqrt{{u}^{\mathrm{2}} −{uv}+{v}^{\mathrm{2}} }\right)}}{{u}} \\ $$$$\mathrm{with}\:{u}=\sqrt[{\mathrm{3}}]{{a}}\wedge{v}=\sqrt[{\mathrm{3}}]{{b}} \\ $$$$\mathrm{true}\:\mathrm{only}\:\mathrm{for}\:{a},{b}\:\geqslant\mathrm{0}\:\mathrm{and}\:\mathrm{all}\:\mathrm{roots}\:\in\mathbb{R} \\ $$
Commented by frc2crc last updated on 25/Sep/20
why v=(b)^(1/4) ?
$${why}\:{v}=\sqrt[{\mathrm{4}}]{{b}}? \\ $$
Commented by MJS_new last updated on 25/Sep/20
typo sorry
$$\mathrm{typo}\:\mathrm{sorry} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *