Menu Close

A-1-A-2-A-3-A-n-are-defined-as-follows-A-1-2-A-n-1-2-A-1-A-2-A-3-A-n-for-n-1-2-3-a-Evaluate-the-numerical-values-of-A-3-and-A-4-b-Prove-that-A-2-A-3-A-n-form-a-geome




Question Number 122999 by ZiYangLee last updated on 21/Nov/20
A_1 ,A_2 ,A_3 ,…,A_n  are defined as follows      A_1 =2, A_(n−1) =2(A_1 +A_2 +A_3 +…+A_n )  for n=1,2,3,…  (a)Evaluate the numerical values of A_(3 ) and A_4   (b)Prove that A_2 ,A_3 ,…,A_n  form a geometric       progression.
A1,A2,A3,,AnaredefinedasfollowsA1=2,An1=2(A1+A2+A3++An)forn=1,2,3,(a)EvaluatethenumericalvaluesofA3andA4(b)ProvethatA2,A3,,Anformageometricprogression.
Answered by mathmax by abdo last updated on 21/Nov/20
A_1 =2 and A_2 =2(A_1 +A_2 +A_3 )  A_1 =2(A_1 +A_2 ) ⇒−A_1 =2A_2  ⇒A_2 =−(1/2)A_1 =−1  A_2 =2A_1  +2A_2  +2A_3  ⇒2A_3 =−A_2 −2A_1 =1−4 =−3 ⇒  A_3 =−(3/2)  A_3 =2(A_1  +A_2  +A_3 +A_4 ) =2A_1  +2A_2 +2A_3  +2A_4  ⇒  2A_4 =A_3 −2A_1 −2A_2 −2A_3  =−A_3 −2A_1 −2A_2   =(3/2)−4 +2 =(3/2)−2 =−(1/2) ⇒A_4 =−(1/4)  (A_3 /A_2 )=−(3/2)×(−1)=(3/2) ⇒(A_2 /A_3 )=(2/3)  (A_4 /A_3 )=−(1/4)×((−2)/3)=(2/3)  let suppose A_n  geometric complex ⇒ ∃q ∈C /A_(n−1) =qA_n   =2(A_1 +A_2 +....+A_n )  A_n =2(A_1  +A_2 +...+A_(n+1) ) =2(A_1 +A_2 +...+A_n )+2A_(n+1)   =A_(n−1) +2A_(n+1)   =q A_n  +2A_(n+1)  ⇒(1−q)A_n =2A_(n+1)  ⇒  A_n =(2/(1−q)) A_(n+1)   ⇒(2/(1−q))=q ⇒2 =q−q^2  ⇒−q^2 +q−2=0 ⇒  q^2 −q+2 =0 if A_n complex  we get   Δ=1−8=−7 ⇒q_1 =((1+i(√7))/2) and q_2 =((1−i(√7))/2)
A1=2andA2=2(A1+A2+A3)A1=2(A1+A2)A1=2A2A2=12A1=1A2=2A1+2A2+2A32A3=A22A1=14=3A3=32A3=2(A1+A2+A3+A4)=2A1+2A2+2A3+2A42A4=A32A12A22A3=A32A12A2=324+2=322=12A4=14A3A2=32×(1)=32A2A3=23A4A3=14×23=23letsupposeAngeometriccomplexqC/An1=qAn=2(A1+A2+.+An)An=2(A1+A2++An+1)=2(A1+A2++An)+2An+1=An1+2An+1=qAn+2An+1(1q)An=2An+1An=21qAn+121q=q2=qq2q2+q2=0q2q+2=0ifAncomplexwegetΔ=18=7q1=1+i72andq2=1i72
Commented by ZiYangLee last updated on 21/Nov/20
wow...
wow

Leave a Reply

Your email address will not be published. Required fields are marked *