Menu Close

a-1-a-4-a-2-1-a-2-a-1-a-2-a-2-2-x-y-what-is-x-y-




Question Number 33766 by .none. last updated on 23/Apr/18
a−(1/a)=4  (√(a^2 +(1/a^2 )))−(√((a+(1/a))^2 ))−(√((a−2)^2 ))=(√x)−(√y)  what is [x+y]?
$${a}−\frac{\mathrm{1}}{{a}}=\mathrm{4} \\ $$$$\sqrt{{a}^{\mathrm{2}} +\frac{\mathrm{1}}{{a}^{\mathrm{2}} }}−\sqrt{\left({a}+\frac{\mathrm{1}}{{a}}\right)^{\mathrm{2}} }−\sqrt{\left({a}−\mathrm{2}\right)^{\mathrm{2}} }=\sqrt{{x}}−\sqrt{{y}} \\ $$$${what}\:{is}\:\left[{x}+{y}\right]? \\ $$
Answered by MJS last updated on 23/Apr/18
a=2±(√5)  (√(a^2 +(1/a^2 )))=3(√2)  (√((a+(1/a))^2 ))=2(√5)  (√((a−2)^2 ))=(√5)  3(√2)−2(√5)−(√5)=(√x)−(√y)  3(√2)−3(√5)=(√x)−(√y)  (√(18))−(√(45))=(√x)−(√y)  x=18  y=45  x+y=63
$${a}=\mathrm{2}\pm\sqrt{\mathrm{5}} \\ $$$$\sqrt{{a}^{\mathrm{2}} +\frac{\mathrm{1}}{{a}^{\mathrm{2}} }}=\mathrm{3}\sqrt{\mathrm{2}} \\ $$$$\sqrt{\left({a}+\frac{\mathrm{1}}{{a}}\right)^{\mathrm{2}} }=\mathrm{2}\sqrt{\mathrm{5}} \\ $$$$\sqrt{\left({a}−\mathrm{2}\right)^{\mathrm{2}} }=\sqrt{\mathrm{5}} \\ $$$$\mathrm{3}\sqrt{\mathrm{2}}−\mathrm{2}\sqrt{\mathrm{5}}−\sqrt{\mathrm{5}}=\sqrt{{x}}−\sqrt{{y}} \\ $$$$\mathrm{3}\sqrt{\mathrm{2}}−\mathrm{3}\sqrt{\mathrm{5}}=\sqrt{{x}}−\sqrt{{y}} \\ $$$$\sqrt{\mathrm{18}}−\sqrt{\mathrm{45}}=\sqrt{{x}}−\sqrt{{y}} \\ $$$${x}=\mathrm{18} \\ $$$${y}=\mathrm{45} \\ $$$${x}+{y}=\mathrm{63} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *