Menu Close

a-1-a-b-1-b-c-1-c-d-1-d-are-four-distinct-points-on-a-circle-of-radius-is-4-units-then-abcd-is-equal-to-




Question Number 31569 by momo last updated on 10/Mar/18
(a,(1/a)),(b,(1/b)),(c,(1/c)),(d,(1/d)) are four  distinct points on a circle of radius  is 4 units then abcd is equal to ?
(a,1a),(b,1b),(c,1c),(d,1d)arefourdistinctpointsonacircleofradiusis4unitsthenabcdisequalto?
Answered by MJS last updated on 10/Mar/18
center=(0;0):  x^2 +y^2 −16=0  y=(1/x)  ⇒ x^2 +(1/x^2 )−16=0  x^4 −16x^2 +1=0  x=(√t)  t^2 −16t+1=0  t=8±(√(64−1))=8±3(√7)  x_1 =−(√(8+3(√7)))  x_2 =−(√(8−3(√7)))  x_3 =(√(8−3(√7)))  x_4 =(√(8+3(√7)))  abcd=x_1 x_2 x_3 x_4 =1  center=(m;n)  (x−m)^2 +(y−n)^2 =r^2   y=(1/x)  (x−m)^2 +((1/x)−n)^2 −r^2 =0  x^2 −2mx+m^2 +(1/x^2 )−((2n)/x)+n^2 −r^2 =0  x^4 −2mx^3 +(m^2 +n^2 −r^2 )x^2 −2nx+1=0  ⇒ x_1 x_2 x_3 x_4 =1  for x_i ∈C
center=(0;0):x2+y216=0y=1xx2+1x216=0x416x2+1=0x=tt216t+1=0t=8±641=8±37x1=8+37x2=837x3=837x4=8+37abcd=x1x2x3x4=1center=(m;n)(xm)2+(yn)2=r2y=1x(xm)2+(1xn)2r2=0x22mx+m2+1x22nx+n2r2=0x42mx3+(m2+n2r2)x22nx+1=0x1x2x3x4=1forxiC

Leave a Reply

Your email address will not be published. Required fields are marked *