Question Number 57819 by behi83417@gmail.com last updated on 12/Apr/19
$$\boldsymbol{\mathrm{a}}.\:\:\int\:\:\:\left[\frac{\mathrm{1}−\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{x}}} }{\mathrm{1}+\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{x}}} }\right]\:^{\frac{\mathrm{1}}{\mathrm{2}}} \:\boldsymbol{\mathrm{dx}}=? \\ $$$$\boldsymbol{\mathrm{b}}.\:\:\:\:\:\int\:\:\frac{\boldsymbol{\mathrm{lnx}}}{\:\sqrt{\mathrm{1}+\boldsymbol{\mathrm{x}}}}=? \\ $$$$\boldsymbol{\mathrm{c}}.\:\:\:\:\:\:\:\underset{\:\sqrt{\boldsymbol{\mathrm{e}}}} {\overset{\:\:\:\:\:\boldsymbol{\mathrm{e}}} {\int}}\:\:\boldsymbol{\mathrm{sin}}\left(\boldsymbol{\mathrm{lnx}}\right)\boldsymbol{\mathrm{dx}}=? \\ $$
Commented by Abdo msup. last updated on 13/Apr/19
$$\left.{b}\right)\:{let}\:{I}\:=\int\:\frac{{ln}\left({x}\right)}{\:\sqrt{\mathrm{1}+{x}}}\:{dx}\:\:{by}\:{parts}\:{u}^{'} =\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{x}}}\:{and}\:{v}={ln}\left({x}\right) \\ $$$$\Rightarrow{I}\:=\mathrm{2}\sqrt{\mathrm{1}+{x}}{ln}\left({x}\right)−\int\frac{\mathrm{2}\sqrt{\mathrm{1}+{x}}}{{x}}\:{dx} \\ $$$$=\mathrm{2}{ln}\left({x}\right)\sqrt{\mathrm{1}+{x}}\:−\mathrm{2}\:\int\:\:\frac{\sqrt{\mathrm{1}+{x}}}{{x}}\:{dx}\:\:{but} \\ $$$$\int\:\:\frac{\sqrt{\mathrm{1}+{x}}}{{x}}\:{dx}\:=_{\sqrt{\mathrm{1}+{x}}={t}} \:\:\:\int\:\:\frac{{t}}{{t}^{\mathrm{2}} −\mathrm{1}}\left(\mathrm{2}{t}\right){dt} \\ $$$$=\mathrm{2}\:\int\:\:\frac{{t}^{\mathrm{2}} }{{t}^{\mathrm{2}} −\mathrm{1}}\:{dt}\:=\mathrm{2}\:\int\:\:\frac{{t}^{\mathrm{2}} −\mathrm{1}+\mathrm{1}}{{t}^{\mathrm{2}} −\mathrm{1}}\:{dt} \\ $$$$=\mathrm{2}{t}\:+\mathrm{2}\:\int\:\:\frac{{dt}}{{t}^{\mathrm{2}} −\mathrm{1}}\:=\mathrm{2}{t}\:+\int\:\left(\frac{\mathrm{1}}{{t}−\mathrm{1}}\:−\frac{\mathrm{1}}{{t}+\mathrm{1}}\right){dt} \\ $$$$=\mathrm{2}{t}\:+{ln}\mid\frac{{t}−\mathrm{1}}{{t}+\mathrm{1}}\mid\:+{c} \\ $$$$=\mathrm{2}\sqrt{\mathrm{1}+{x}}+{ln}\mid\frac{\sqrt{\mathrm{1}+{x}}−\mathrm{1}}{\:\sqrt{\mathrm{1}+{x}}+\mathrm{1}}\mid\:+{c}\:\Rightarrow \\ $$$${I}\:=\mathrm{2}\sqrt{\mathrm{1}+{x}}{ln}\left({x}\right)−\mathrm{4}\sqrt{\mathrm{1}+{x}}−\mathrm{2}{ln}\mid\frac{\sqrt{\mathrm{1}+{x}}−\mathrm{1}}{\:\sqrt{\mathrm{1}+{x}}\:+\mathrm{1}}\:\mid\:+{c}\:. \\ $$
Commented by behi83417@gmail.com last updated on 13/Apr/19
$${thank}\:{you}\:{very}\:{much}\:{proph}.\:{Abdo}. \\ $$
Commented by Abdo msup. last updated on 13/Apr/19
$${you}\:{are}\:{welcome}\:. \\ $$
Commented by Abdo msup. last updated on 13/Apr/19
$${let}\:{I}\:=\int\sqrt{\frac{\mathrm{1}−{e}^{{x}} }{\mathrm{1}+{e}^{{x}} }}{dx}\:\:{changement}\:{e}^{{x}} ={t}\:{give} \\ $$$${I}\:=\int\:\sqrt{\frac{\mathrm{1}−{t}}{\mathrm{1}+{t}}}\frac{{dt}}{{t}}\:\:{now}\:{we}\:{use}\:{ch}.\sqrt{\frac{\mathrm{1}−{t}}{\mathrm{1}+{t}}}={u}\:\Rightarrow \\ $$$$\frac{\mathrm{1}−{t}}{\mathrm{1}+{t}}\:={u}^{\mathrm{2}} \:\Rightarrow\mathrm{1}−{t}\:={u}^{\mathrm{2}} \:+{u}^{\mathrm{2}} {t}\:\Rightarrow\mathrm{1}−{u}^{\mathrm{2}} =\left(\mathrm{1}+{u}^{\mathrm{2}} \right){t}\:\Rightarrow \\ $$$${t}\:=\frac{\mathrm{1}−{u}^{\mathrm{2}} }{\mathrm{1}+{u}^{\mathrm{2}} }\:\Rightarrow{dt}\:=\frac{−\mathrm{2}{u}\left(\mathrm{1}+{u}^{\mathrm{2}} \right)−\mathrm{2}{u}\left(\mathrm{1}−{u}^{\mathrm{2}} \right)}{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$$=\frac{−\mathrm{4}{u}}{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)^{\mathrm{2}} }{du}\:\Rightarrow{I}\:=\int\:\:{u}\:\frac{\mathrm{1}+{u}^{\mathrm{2}} }{\mathrm{1}−{u}^{\mathrm{2}} }\:\frac{−\mathrm{4}{u}}{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{du} \\ $$$$=−\mathrm{4}\:\int\:\:\frac{{u}^{\mathrm{2}} }{\left(\mathrm{1}−{u}^{\mathrm{2}} \right)\left(\mathrm{1}+{u}^{\mathrm{2}} \right)}\:{du} \\ $$$$=−\mathrm{2}\:\int{u}^{\mathrm{2}} \left\{\:\:\frac{\mathrm{1}}{\mathrm{1}−{u}^{\mathrm{2}} }\:−\frac{\mathrm{1}}{\mathrm{1}+{u}^{\mathrm{2}} }\right\}{du} \\ $$$$=\mathrm{2}\:\int\:\:\:\frac{{u}^{\mathrm{2}} }{{u}^{\mathrm{2}} −\mathrm{1}}\:{du}\:\:+\mathrm{2}\int\:\:\frac{{u}^{\mathrm{2}} }{\mathrm{1}+{u}^{\mathrm{2}} }{du} \\ $$$$=\mathrm{2}\int\:\frac{{u}^{\mathrm{2}} −\mathrm{1}+\mathrm{1}}{{u}^{\mathrm{2}} −\mathrm{1}}\:{du}\:+\mathrm{2}\:\int\frac{\mathrm{1}+{u}^{\mathrm{2}} −\mathrm{1}}{\mathrm{1}+{u}^{\mathrm{2}} }\:{du} \\ $$$$=\mathrm{2}{u}\:+\int\:\:\frac{\mathrm{2}}{{u}^{\mathrm{2}} −\mathrm{1}}\:{du}\:+\mathrm{2}{u}\:−\mathrm{2}\:\int\:\:\frac{{du}}{\mathrm{1}+{u}^{\mathrm{2}} } \\ $$$$=\mathrm{4}{u}\:+\int\:\left(\frac{\mathrm{1}}{{u}−\mathrm{1}}\:−\frac{\mathrm{1}}{{u}+\mathrm{1}}\right){du}\:−\mathrm{2}\:\int\:\frac{{du}}{\mathrm{1}+{u}^{\mathrm{2}} } \\ $$$$=\mathrm{4}{u}\:+{ln}\mid\frac{{u}−\mathrm{1}}{{u}+\mathrm{1}}\mid−\mathrm{2}{arctan}\left({u}\right)+{c} \\ $$$$=\mathrm{4}\sqrt{\frac{\mathrm{1}−{t}}{\mathrm{1}+{t}}}\:+{ln}\mid\frac{\sqrt{\frac{\mathrm{1}−{t}}{\mathrm{1}+{t}}}−\mathrm{1}}{\:\sqrt{\frac{\mathrm{1}−{t}}{\mathrm{1}+{t}}}+\mathrm{1}}\mid−\mathrm{2}{arctan}\left(\sqrt{\frac{\mathrm{1}−{t}}{\mathrm{1}+{t}}}\right)+{c} \\ $$$${I}=\mathrm{4}\sqrt{\frac{\mathrm{1}−{e}^{{x}} }{\mathrm{1}+{e}^{{x}} }}\:+{ln}\mid\frac{\sqrt{\frac{\mathrm{1}−{e}^{{x}} }{\mathrm{1}+{e}^{{x}} }}−\mathrm{1}}{\:\sqrt{\frac{\mathrm{1}−{e}^{{x}} }{\mathrm{1}+{e}^{{x}} }}+\mathrm{1}}\mid−\mathrm{2}{arctan}\left(\sqrt{\frac{\mathrm{1}−{e}^{{x}} }{\mathrm{1}+{e}^{{x}} }}\right)+{c} \\ $$$$ \\ $$
Commented by behi83417@gmail.com last updated on 13/Apr/19
$${thanks}\:{in}\:{advamce}\:{dear}\:{proph}.\:{Abdo}. \\ $$
Commented by peter frank last updated on 13/Apr/19
$${nice}\:{work} \\ $$
Commented by maxmathsup by imad last updated on 19/Apr/19
$${you}\:{are}\:{welcome} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 13/Apr/19
$$\left.{c}\right)\int_{\sqrt{{e}}} ^{{e}} \:{sin}\left({lnx}\right){dx} \\ $$$${t}={lnx}\rightarrow{x}={e}^{{t}} \:\:\:\:\:\:\:\:{dx}={e}^{{t}} {dt} \\ $$$$\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} \:{sint}×{e}^{{t}} {dt} \\ $$$${now}\:{use}\:{formula}\: \\ $$$$\int{e}^{{ax}} {sinbxdx}=\frac{{e}^{{ax}} \left({asinbx}−{bcosbx}\right)}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$$\mid\frac{{e}^{{t}} \left({sint}−{cost}\right)}{\mathrm{1}^{\mathrm{2}} +\mathrm{1}^{\mathrm{2}} }\mid_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left\{{e}\left({sin}\mathrm{1}−{cos}\mathrm{1}\right)−\sqrt{{e}}\:\left({sin}\frac{\mathrm{1}}{\mathrm{2}}−{cos}\frac{\mathrm{1}}{\mathrm{2}}\right)\right\} \\ $$
Commented by behi83417@gmail.com last updated on 13/Apr/19
$${thank}\:{you}\:{so}\:{much}\:{sir}\:{tanmay}. \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 13/Apr/19
$$\left.{most}\:{selcome}…{pls}\:{check}\:{answer}\:{of}\:{a}\right) \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 13/Apr/19
$$\left.{a}\right)\int\frac{\mathrm{1}−{e}^{{x}} }{\:\sqrt{\mathrm{1}−{e}^{\mathrm{2}{x}} }}{dx} \\ $$$$\int\frac{{dx}}{\:\sqrt{\mathrm{1}−{e}^{\mathrm{2}{x}} }}−\int\frac{{e}^{{x}} {dx}}{\:\sqrt{\mathrm{1}−{e}^{\mathrm{2}{x}} }} \\ $$$$\int\frac{{e}^{−{x}} {dx}}{\:\sqrt{{e}^{−\mathrm{2}{x}} −\mathrm{1}}}−\int\frac{{e}^{{x}} {dx}}{\:\sqrt{\mathrm{1}−{e}^{\mathrm{2}{x}} }} \\ $$$$=\left(−\mathrm{1}\right)\int\frac{{d}\left({e}^{−{x}} \right)}{\:\sqrt{\left({e}^{−{x}} \right)^{\mathrm{2}} −\mathrm{1}}}−\int\frac{{d}\left({e}^{{x}} \right)}{\:\sqrt{\mathrm{1}−\left({e}^{{x}} \right)^{\mathrm{2}} }} \\ $$$${now}\:{use}\:{formula} \\ $$$$\int\frac{{dx}}{\:\sqrt{{x}^{\mathrm{2}} −{a}^{\mathrm{2}} }}={ln}\left({x}+\sqrt{{x}^{\mathrm{2}} −{a}^{\mathrm{2}} }\:\right) \\ $$$$\int\frac{{dx}}{\:\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} }}={sin}^{−\mathrm{1}} \left(\frac{{x}}{{a}}\right) \\ $$$$=\left(−\mathrm{1}\right){ln}\left({e}^{−{x}} +\sqrt{{e}^{−\mathrm{2}{x}} −\mathrm{1}}\:\right)−{sin}^{−\mathrm{1}} \left(\frac{{e}^{{x}} }{\mathrm{1}}\right)+{c} \\ $$
Commented by behi83417@gmail.com last updated on 13/Apr/19
$${your}\:{answer}\:{is}\:{right}\:{sir}\:{tanmay}. \\ $$$${thanks}\:{in}\:{advance}. \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 13/Apr/19
$${most}\:{welcome}\:{sir} \\ $$