Menu Close

a-13-b-19-a-b-24-a-b-




Question Number 169885 by depressiveshrek last updated on 11/May/22
∣a^→ ∣=13  ∣b^→ ∣=19  ∣a^→ +b^→ ∣=24  ∣a^→ −b^→ ∣=?
$$\mid\overset{\rightarrow} {{a}}\mid=\mathrm{13} \\ $$$$\mid\overset{\rightarrow} {{b}}\mid=\mathrm{19} \\ $$$$\mid\overset{\rightarrow} {{a}}+\overset{\rightarrow} {{b}}\mid=\mathrm{24} \\ $$$$\mid\overset{\rightarrow} {{a}}−\overset{\rightarrow} {{b}}\mid=? \\ $$
Answered by mr W last updated on 11/May/22
∣a^→ −b^→ ∣=x  x^2 +24^2 =2×(13^2 +19^2 )  ⇒x=(√(2×(13^2 +19^2 )−24^2 ))=22 ✓
$$\mid\overset{\rightarrow} {{a}}−\overset{\rightarrow} {{b}}\mid={x} \\ $$$${x}^{\mathrm{2}} +\mathrm{24}^{\mathrm{2}} =\mathrm{2}×\left(\mathrm{13}^{\mathrm{2}} +\mathrm{19}^{\mathrm{2}} \right) \\ $$$$\Rightarrow{x}=\sqrt{\mathrm{2}×\left(\mathrm{13}^{\mathrm{2}} +\mathrm{19}^{\mathrm{2}} \right)−\mathrm{24}^{\mathrm{2}} }=\mathrm{22}\:\checkmark \\ $$
Commented by depressiveshrek last updated on 11/May/22
sorry where does the 2 come from?
$${sorry}\:{where}\:{does}\:{the}\:\mathrm{2}\:{come}\:{from}? \\ $$
Commented by mr W last updated on 12/May/22
Commented by mr W last updated on 11/May/22
c^→ =a^→ +b^→   d^→ =a^→ −b^→   a^2 =((d/2))^2 +((c/2))^2 −2×((d/2))×((c/2))×cos θ  b^2 =((d/2))^2 +((c/2))^2 +2×((d/2))×((c/2))×cos θ  ⇒a^2 +b^2 =2×((d/2))^2 +2×((c/2))^2   ⇒c^2 +d^2 =2(a^2 +b^2 )
$$\overset{\rightarrow} {{c}}=\overset{\rightarrow} {{a}}+\overset{\rightarrow} {{b}} \\ $$$$\overset{\rightarrow} {{d}}=\overset{\rightarrow} {{a}}−\overset{\rightarrow} {{b}} \\ $$$${a}^{\mathrm{2}} =\left(\frac{{d}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{{c}}{\mathrm{2}}\right)^{\mathrm{2}} −\mathrm{2}×\left(\frac{{d}}{\mathrm{2}}\right)×\left(\frac{{c}}{\mathrm{2}}\right)×\mathrm{cos}\:\theta \\ $$$${b}^{\mathrm{2}} =\left(\frac{{d}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{{c}}{\mathrm{2}}\right)^{\mathrm{2}} +\mathrm{2}×\left(\frac{{d}}{\mathrm{2}}\right)×\left(\frac{{c}}{\mathrm{2}}\right)×\mathrm{cos}\:\theta \\ $$$$\Rightarrow{a}^{\mathrm{2}} +{b}^{\mathrm{2}} =\mathrm{2}×\left(\frac{{d}}{\mathrm{2}}\right)^{\mathrm{2}} +\mathrm{2}×\left(\frac{{c}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$$\Rightarrow{c}^{\mathrm{2}} +{d}^{\mathrm{2}} =\mathrm{2}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *