Menu Close

a-2-1-b-2-b-2-c-2-b-4-ab-c-solve-for-a-b-c-




Question Number 55887 by behi83417@gmail.com last updated on 05/Mar/19
   a^2 +1=b^2      b^2 +c^2 =b^4      ab=c      solve for :   a, b, c.
$$\:\:\:{a}^{\mathrm{2}} +\mathrm{1}={b}^{\mathrm{2}} \\ $$$$\:\:\:{b}^{\mathrm{2}} +{c}^{\mathrm{2}} ={b}^{\mathrm{4}} \\ $$$$\:\:\:{ab}={c} \\ $$$$\:\:\:\:\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{for}}\::\:\:\:\boldsymbol{\mathrm{a}},\:\boldsymbol{\mathrm{b}},\:\boldsymbol{\mathrm{c}}. \\ $$
Answered by MJS last updated on 05/Mar/19
b^2 =a^2 +1 ⇒ (a^2 +1)^2 −(a^2 +1)−c^2 =0       a^4 +a^2 −c^2 =0  c=ab ⇒ a^4 +a^2 −a^2 (a^2 +1)=0 true for a∈R  ⇒ a∈R ∧ b=±(√(a^2 +1)) ∧ c=±a(√(a^2 +1))
$${b}^{\mathrm{2}} ={a}^{\mathrm{2}} +\mathrm{1}\:\Rightarrow\:\left({a}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} −\left({a}^{\mathrm{2}} +\mathrm{1}\right)−{c}^{\mathrm{2}} =\mathrm{0} \\ $$$$\:\:\:\:\:{a}^{\mathrm{4}} +{a}^{\mathrm{2}} −{c}^{\mathrm{2}} =\mathrm{0} \\ $$$${c}={ab}\:\Rightarrow\:{a}^{\mathrm{4}} +{a}^{\mathrm{2}} −{a}^{\mathrm{2}} \left({a}^{\mathrm{2}} +\mathrm{1}\right)=\mathrm{0}\:\mathrm{true}\:\mathrm{for}\:{a}\in\mathbb{R} \\ $$$$\Rightarrow\:{a}\in\mathbb{R}\:\wedge\:{b}=\pm\sqrt{{a}^{\mathrm{2}} +\mathrm{1}}\:\wedge\:{c}=\pm{a}\sqrt{{a}^{\mathrm{2}} +\mathrm{1}} \\ $$
Answered by JDamian last updated on 06/Mar/19
    As the 2nd. and the  3rd. expressions  combined  are the first; the only one to solve is:  a^2 +1=b^2   ⇒ b=±(√(a^2 +1))  ⇒  c=±a(√(a^2 +1))
$$ \\ $$$$ \\ $$$$\mathrm{As}\:\mathrm{the}\:\mathrm{2nd}.\:\mathrm{and}\:\mathrm{the}\:\:\mathrm{3rd}.\:\mathrm{expressions} \\ $$$$\mathrm{combined}\:\:\mathrm{are}\:\mathrm{the}\:\mathrm{first};\:\mathrm{the}\:\mathrm{only}\:\mathrm{one}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{is}: \\ $$$${a}^{\mathrm{2}} +\mathrm{1}={b}^{\mathrm{2}} \:\:\Rightarrow\:{b}=\pm\sqrt{{a}^{\mathrm{2}} +\mathrm{1}}\:\:\Rightarrow\:\:{c}=\pm{a}\sqrt{{a}^{\mathrm{2}} +\mathrm{1}}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *