Menu Close

a-2-b-2-10-ab-13-a-3-b-3-




Question Number 110727 by Study last updated on 30/Aug/20
a^2 +b^2 =10   ,  ab=13   , a^3 +b^3 =?
$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} =\mathrm{10}\:\:\:,\:\:{ab}=\mathrm{13}\:\:\:,\:{a}^{\mathrm{3}} +{b}^{\mathrm{3}} =? \\ $$
Answered by mr W last updated on 30/Aug/20
(a+b)^2 =a^2 +b^2 +2ab=10+2×13=36  ⇒a+b=±6  (a+b)^3 =a^3 +b^3 +3ab(a+b)  a^3 +b^3 =(a+b)^3 −3ab(a+b)  =(a+b)(a^2 +b^2 −ab)  =(±6)(10−13)=∓18
$$\left({a}+{b}\right)^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{2}{ab}=\mathrm{10}+\mathrm{2}×\mathrm{13}=\mathrm{36} \\ $$$$\Rightarrow{a}+{b}=\pm\mathrm{6} \\ $$$$\left({a}+{b}\right)^{\mathrm{3}} ={a}^{\mathrm{3}} +{b}^{\mathrm{3}} +\mathrm{3}{ab}\left({a}+{b}\right) \\ $$$${a}^{\mathrm{3}} +{b}^{\mathrm{3}} =\left({a}+{b}\right)^{\mathrm{3}} −\mathrm{3}{ab}\left({a}+{b}\right) \\ $$$$=\left({a}+{b}\right)\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{ab}\right) \\ $$$$=\left(\pm\mathrm{6}\right)\left(\mathrm{10}−\mathrm{13}\right)=\mp\mathrm{18} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *