Menu Close

a-2-b-2-4-ab-2-a-b-




Question Number 180069 by Acem last updated on 06/Nov/22
a^2 −b^2 = 4 , ab= 2   , a+b= ?
a2b2=4,ab=2,a+b=?
Commented by Acem last updated on 07/Nov/22
Have a good day my brothers   mr. W and mr. Rasheed
Haveagooddaymybrothersmr.Wandmr.Rasheed
Answered by Rasheed.Sindhi last updated on 07/Nov/22
a^2 −b^2 =4, ab= 2   , a+b= ?  a^2 −b^2 =4  (a−b)(a+b)=4  (a−b)^2 (a+b)^2 =4^2   (a^2 +b^2 −2ab)(a^2 +b^2 −2ab)=16  (a^2 +b^2 )^2 −( 2(2) )^2 =16  (a^2 +b^2 )^2 =32  a^2 +b^2 =±4(√2)     (a+b)^2 =a^2 +b^2 +2ab=±4(√2) +2(2)             =4±4(√2)  a+b=2(√(1±(√2) ))
a2b2=4,ab=2,a+b=?a2b2=4(ab)(a+b)=4(ab)2(a+b)2=42(a2+b22ab)(a2+b22ab)=16(a2+b2)2(2(2))2=16(a2+b2)2=32a2+b2=±42(a+b)2=a2+b2+2ab=±42+2(2)=4±42a+b=21±2
Commented by Acem last updated on 07/Nov/22
Am sorry again, thank for you
Amsorryagain,thankforyou
Commented by Rasheed.Sindhi last updated on 07/Nov/22
No matter, it′s a misprint only (not a  mistake); I′ve edited my answers.
Nomatter,itsamisprintonly(notamistake);Iveeditedmyanswers.
Commented by Acem last updated on 06/Nov/22
I am very sorry , a^2 −b^2 = 4 , i don′t know why   the =4 didn′t typed though i did... sorry again!  Apologies for the inconvenience
Iamverysorry,a2b2=4,idontknowwhythe=4didnttypedthoughididsorryagain!Apologiesfortheinconvenience
Commented by CElcedricjunior last updated on 07/Nov/22
Attention!!!  pourquoi mettre 1∓(√2)  dans la racine
Attention!!!pourquoimettre12danslaracine
Commented by Rasheed.Sindhi last updated on 07/Nov/22
Can you please translate in English sir!
CanyoupleasetranslateinEnglishsir!
Commented by Acem last updated on 08/Nov/22
Parce que si a,b∈ Z ⇒ a+b= ∓ 2 (√(1∓(√2)))    Mais si a,b∈ R ⇒ a+b= ∓ 2 (√(1+(√2)))
Parcequesia,bZa+b=212Maissia,bRa+b=21+2
Answered by Rasheed.Sindhi last updated on 07/Nov/22
a^2 −b^2 =4 , ab= 2   , a+b= ?  (a−b)(a+b)=4  Let a+b=t....(i)  a−b=(4/t)......(ii)  (i)+(ii):  2a=t+(4/t)......(iii)  (i)−(ii):  2b=t−(4/t)......(iv)  (iii)×(iv):  4ab=t^2 −((16)/t^2 )=4(2)=8          t^4 −8t^2 −16=0      t^2 =((8±(√(64+64)))/2)=((8±8(√2))/2)=4±4(√5)     t=(√(4±4(√2)))   a+b=2(√(1±(√2)))
a2b2=4,ab=2,a+b=?(ab)(a+b)=4Leta+b=t.(i)ab=4t(ii)(i)+(ii):2a=t+4t(iii)(i)(ii):2b=t4t(iv)(iii)×(iv):4ab=t216t2=4(2)=8t48t216=0t2=8±64+642=8±822=4±45t=4±42a+b=21±2
Answered by Rasheed.Sindhi last updated on 07/Nov/22
a^2 −b^2 =4 , ab= 2   , a+b= ?  (a^2 −b^2 )^2 =(4)^2       a^4 +b^4 −2(ab)^2 =16      a^4 +b^4 −2(2)^2 =16      a^4 +b^4 =24  (a^2 +b^2 )^2 −2(ab)^2 =24     (a^2 +b^2 )^2 −2(2)^2 =24     (a^2 +b^2 )^2 =32      a^2 +b^2 =±4(√2)  (a+b)^2 −2ab=±4(√5)      (a+b)^2 −2(2)=±4(√2)      (a+b)^2 =4±4(√2)  a+b=2(√(1±(√2) ))
a2b2=4,ab=2,a+b=?(a2b2)2=(4)2a4+b42(ab)2=16a4+b42(2)2=16a4+b4=24(a2+b2)22(ab)2=24(a2+b2)22(2)2=24(a2+b2)2=32a2+b2=±42(a+b)22ab=±45(a+b)22(2)=±42(a+b)2=4±42a+b=21±2
Commented by Rasheed.Sindhi last updated on 07/Nov/22
Yes sir and if a+b∈R,then  a+b=±2(√(1+(√2) ))   ⊤hanks sir!
Yessirandifa+bR,thena+b=±21+2hankssir!
Commented by mr W last updated on 07/Nov/22
why not  a+b=±2(√(1±(√2) )) ?
whynota+b=±21±2?
Commented by mr W last updated on 07/Nov/22
agree!
agree!
Commented by Acem last updated on 08/Nov/22
Thanks for the many solutions and for your   efforts!    By the way i think that there′s ∓ before the last   number, a+b= ± 2(√(1±(√2)))     if c=a+bi ∈ Z  ′See Mr. Frix′s note′
Thanksforthemanysolutionsandforyourefforts!Bythewayithinkthattheresbeforethelastnumber,a+b=±21±2ifc=a+biZSeeMr.Frixsnote
Commented by Frix last updated on 08/Nov/22
typo I guess...  Z={... , −3, −2, −1, 0, 1, 2, 3, ...}  you mean C={a+bi∣a, b ∈R∧i=(√(−1))}
typoIguessZ={,3,2,1,0,1,2,3,}youmeanC={a+bia,bRi=1}
Commented by Acem last updated on 08/Nov/22
Exactly Mr. Frix, you are right
ExactlyMr.Frix,youareright
Answered by Acem last updated on 08/Nov/22
a^2 −b^2 = 4  a^4 +b^4 = 16+8∣_(+2a^2 b^2 )   (a^2 +b^2 )^2 = 24+8∣_(+2a^2 b^2 )   a^2 +b^2 = ∓4(√2)  (a+b)^2 = ∓4(√2) +4∣_(+2ab)   a+b= ∓ 2 (√(1+(√2)))   ; a,b∈ R  a+b= ∓ 2 (√(1∓(√2)))    ; c∈ Z: c= a+ bi; a,b∈ R
a2b2=4a4+b4=16+8+2a2b2(a2+b2)2=24+8+2a2b2a2+b2=42(a+b)2=42+4+2aba+b=21+2;a,bRa+b=212;cZ:c=a+bi;a,bR

Leave a Reply

Your email address will not be published. Required fields are marked *