Menu Close

A-20-digit-decimal-number-has-been-converted-into-octal-system-Say-it-has-n-digits-What-can-be-minimum-and-maximum-possible-values-of-n-




Question Number 35071 by Rasheed.Sindhi last updated on 15/May/18
A 20-digit decimal number has been  converted into octal system.Say it has   n digits. What can be minimum and  maximum possible values of n?
A20digitdecimalnumberhasbeenconvertedintooctalsystem.Sayithasndigits.Whatcanbeminimumandmaximumpossiblevaluesofn?
Answered by candre last updated on 15/May/18
m=lα^k +d;0<l≤α−1∧0≤d<α^k ∧(l,d,k,α)∈N^4 ∧α>1  m=(l+dα^(−k) )α^k   log_α m=log_α [(l+dα^(−k) )α^k ]  =log_α α^k +log_α (l+dα^(−k) )  =klog_α α+log_α (l+dα^(−k) )  =k+log_α (l+dα^(−k) )  0≤d<α^k ⇒0≤dα^(−k) <1  0<l+dα^(−k) <α  log_α (l+dα^(−k) )<1  α^k ≤m<α^(k+1) ⇒k≤log_α m<k+1  m=a_k ...a_0 ⇒k−0+1=k+1  min⇒num=10^(19)   min=⌊log_8 10^(19) ⌋+1=⌊19log_8 10⌋+1=22  max⇒num=10^(20) −1  max=⌊log_8 (10^(20) −1)⌋+1=23
m=lαk+d;0<lα10d<αk(l,d,k,α)N4α>1m=(l+dαk)αklogαm=logα[(l+dαk)αk]=logααk+logα(l+dαk)=klogαα+logα(l+dαk)=k+logα(l+dαk)0d<αk0dαk<10<l+dαk<αlogα(l+dαk)<1αkm<αk+1klogαm<k+1m=aka0k0+1=k+1minnum=1019min=log81019+1=19log810+1=22maxnum=10201max=log8(10201)+1=23
Commented by Rasheed.Sindhi last updated on 15/May/18
†ђД₪k§ Д ℓø† §îЯ

Leave a Reply

Your email address will not be published. Required fields are marked *