Menu Close

a-2b-3c-12-2ab-3ac-6bc-48-a-b-c-




Question Number 38391 by gunawan last updated on 25/Jun/18
a+2b+3c=12  2ab+3ac+6bc=48  a+b+c=...
a+2b+3c=122ab+3ac+6bc=48a+b+c=
Answered by MrW3 last updated on 26/Jun/18
let  x=a  y=2b  z=3c    (i) ⇒x+y+z=12⇒z=12−x−y  (ii) ⇒xy+yz+zx=48⇒xy+12(x+y)−(x+y)^2 =48    F(x,y)=xy+12(x+y)−(x+y)^2   (∂F/∂x)=y+12−2(x+y)=0⇒2x+y=12  (∂F/∂y)=x+12−2(x+y)=0⇒x+2y=12   { ((2x+y=12)),((x+2y=12)) :}⇒x=y=4⇒F(4,4)=48  ⇒maximum from F(x,y) is at x=y=4  which is 48, that is to say   { ((x+y+z=12)),((xy+yz+zx=48)) :}  has one and only one solution:  x=y=z=4  ⇒a=4, b=(4/2)=2, c=(4/3)  ⇒a+b+c=4+2+(4/3)=((22)/3)
letx=ay=2bz=3c(i)x+y+z=12z=12xy(ii)xy+yz+zx=48xy+12(x+y)(x+y)2=48F(x,y)=xy+12(x+y)(x+y)2Fx=y+122(x+y)=02x+y=12Fy=x+122(x+y)=0x+2y=12{2x+y=12x+2y=12x=y=4F(4,4)=48maximumfromF(x,y)isatx=y=4whichis48,thatistosay{x+y+z=12xy+yz+zx=48hasoneandonlyonesolution:x=y=z=4a=4,b=42=2,c=43a+b+c=4+2+43=223
Commented by tanmay.chaudhury50@gmail.com last updated on 25/Jun/18
excellent...
excellent
Commented by gunawan last updated on 26/Jun/18
wow nice Sir
wowniceSir

Leave a Reply

Your email address will not be published. Required fields are marked *