Menu Close

a-3-1-a-3-18-a-4-1-a-4-




Question Number 86825 by M±th+et£s last updated on 31/Mar/20
a^3 +(1/a^3 )=18  a^4 +(1/a^4 )=?
a3+1a3=18a4+1a4=?
Commented by Ar Brandon last updated on 31/Mar/20
a^3 +(1/a^3 )=18⇒   (a^3 )^2 −18a^3 +1=0    a^3 =((18±(√((−18)^2 −4)))/2)   =   ((18±(√(320)))/2)  =9±4(√5)    a=(9±4(√5))^(1/3)     a^4 +(1/a^4 )  =  (9±4(√5))^(4/3)  + (1/((9±4(√5))^(4/3) ))
a3+1a3=18(a3)218a3+1=0a3=18±(18)242=18±3202=9±45a=(9±45)13a4+1a4=(9±45)43+1(9±45)43
Answered by mr W last updated on 31/Mar/20
(a+(1/a))^3 =a^3 +(1/a^3 )+3(a+(1/a))=18+3(a+(1/a))  let A=a+(1/a)  A^3 −3A−18=0  (A−3)(A^2 +3A+6)=0  ⇒A=3=a+(1/a)  a^4 +(1/a^4 )=(a^2 +(1/a^2 ))^2 −2=[(a+(1/a))^2 −2]^2 −2  =[3^2 −2]^2 −2  =47
(a+1a)3=a3+1a3+3(a+1a)=18+3(a+1a)letA=a+1aA33A18=0(A3)(A2+3A+6)=0A=3=a+1aa4+1a4=(a2+1a2)22=[(a+1a)22]22=[322]22=47
Commented by M±th+et£s last updated on 31/Mar/20
thank you sir
thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *