Menu Close

A-4-4-4-wooden-cube-is-painted-so-that-one-pair-of-opposite-faces-is-blue-one-pair-green-and-one-pair-red-The-cube-is-now-sliced-into-64-cubes-of-side-1-unit-each-i-How-many-of-the-smaller-cubes-




Question Number 18133 by Tinkutara last updated on 15/Jul/17
A 4×4×4 wooden cube is painted so  that one pair of opposite faces is blue,  one pair green and one pair red. The  cube is now sliced into 64 cubes of side  1 unit each.  (i) How many of the smaller cubes have  no painted face?  (ii) How many of the smaller cubes have  exactly one painted face?  (iii) How many of the smaller cubes have  exactly two painted face?  (iv) How many of the smaller cubes have  exactly three painted face?  (v) How many of the smaller cubes have  exactly one face painted blue and one  face painted green?
$$\mathrm{A}\:\mathrm{4}×\mathrm{4}×\mathrm{4}\:\mathrm{wooden}\:\mathrm{cube}\:\mathrm{is}\:\mathrm{painted}\:\mathrm{so} \\ $$$$\mathrm{that}\:\mathrm{one}\:\mathrm{pair}\:\mathrm{of}\:\mathrm{opposite}\:\mathrm{faces}\:\mathrm{is}\:\mathrm{blue}, \\ $$$$\mathrm{one}\:\mathrm{pair}\:\mathrm{green}\:\mathrm{and}\:\mathrm{one}\:\mathrm{pair}\:\mathrm{red}.\:\mathrm{The} \\ $$$$\mathrm{cube}\:\mathrm{is}\:\mathrm{now}\:\mathrm{sliced}\:\mathrm{into}\:\mathrm{64}\:\mathrm{cubes}\:\mathrm{of}\:\mathrm{side} \\ $$$$\mathrm{1}\:\mathrm{unit}\:\mathrm{each}. \\ $$$$\left(\mathrm{i}\right)\:\mathrm{How}\:\mathrm{many}\:\mathrm{of}\:\mathrm{the}\:\mathrm{smaller}\:\mathrm{cubes}\:\mathrm{have} \\ $$$$\mathrm{no}\:\mathrm{painted}\:\mathrm{face}? \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{How}\:\mathrm{many}\:\mathrm{of}\:\mathrm{the}\:\mathrm{smaller}\:\mathrm{cubes}\:\mathrm{have} \\ $$$$\mathrm{exactly}\:\mathrm{one}\:\mathrm{painted}\:\mathrm{face}? \\ $$$$\left(\mathrm{iii}\right)\:\mathrm{How}\:\mathrm{many}\:\mathrm{of}\:\mathrm{the}\:\mathrm{smaller}\:\mathrm{cubes}\:\mathrm{have} \\ $$$$\mathrm{exactly}\:\mathrm{two}\:\mathrm{painted}\:\mathrm{face}? \\ $$$$\left(\mathrm{iv}\right)\:\mathrm{How}\:\mathrm{many}\:\mathrm{of}\:\mathrm{the}\:\mathrm{smaller}\:\mathrm{cubes}\:\mathrm{have} \\ $$$$\mathrm{exactly}\:\mathrm{three}\:\mathrm{painted}\:\mathrm{face}? \\ $$$$\left(\mathrm{v}\right)\:\mathrm{How}\:\mathrm{many}\:\mathrm{of}\:\mathrm{the}\:\mathrm{smaller}\:\mathrm{cubes}\:\mathrm{have} \\ $$$$\mathrm{exactly}\:\mathrm{one}\:\mathrm{face}\:\mathrm{painted}\:\mathrm{blue}\:\mathrm{and}\:\mathrm{one} \\ $$$$\mathrm{face}\:\mathrm{painted}\:\mathrm{green}? \\ $$
Answered by sandy_suhendra last updated on 16/Jul/17
1) (4−2)^3  = 8 (this is like volume)  2) 6 (4−2) = 12 (this is like surface area)  3) 12 (4−2) = 24 (this is like the sum of edges)  4) 8 (vertices)  5) 4 (4−2) = 8
$$\left.\mathrm{1}\right)\:\left(\mathrm{4}−\mathrm{2}\right)^{\mathrm{3}} \:=\:\mathrm{8}\:\left(\mathrm{this}\:\mathrm{is}\:\mathrm{like}\:\mathrm{volume}\right) \\ $$$$\left.\mathrm{2}\right)\:\mathrm{6}\:\left(\mathrm{4}−\mathrm{2}\right)\:=\:\mathrm{12}\:\left(\mathrm{this}\:\mathrm{is}\:\mathrm{like}\:\mathrm{surface}\:\mathrm{area}\right) \\ $$$$\left.\mathrm{3}\right)\:\mathrm{12}\:\left(\mathrm{4}−\mathrm{2}\right)\:=\:\mathrm{24}\:\left(\mathrm{this}\:\mathrm{is}\:\mathrm{like}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{edges}\right) \\ $$$$\left.\mathrm{4}\right)\:\mathrm{8}\:\left(\mathrm{vertices}\right) \\ $$$$\left.\mathrm{5}\right)\:\mathrm{4}\:\left(\mathrm{4}−\mathrm{2}\right)\:=\:\mathrm{8} \\ $$
Commented by Tinkutara last updated on 16/Jul/17
Thanks Sir!
$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *