Menu Close

a-a-3-10-a-a-a-1-




Question Number 112087 by bobhans last updated on 06/Sep/20
   a(√a) −3 = 10(√a) → (√a) + (√a^(−1) ) =?
$$\:\:\:\mathrm{a}\sqrt{\mathrm{a}}\:−\mathrm{3}\:=\:\mathrm{10}\sqrt{\mathrm{a}}\:\rightarrow\:\sqrt{\mathrm{a}}\:+\:\sqrt{\mathrm{a}^{−\mathrm{1}} }\:=? \\ $$
Answered by bemath last updated on 06/Sep/20
Answered by 1549442205PVT last updated on 06/Sep/20
Put (√a)=x⇒x≥0.Then ,from the   hypothesis a(√a)−3=10(√a) we have  x^3 −10a−3=0  ⇔(x+3)(x^2 −3x−1)=0.Since x≥0,    x+3>0⇒x^2 −3x−1=0  ⇔x=((3+(√(13)))/2)⇒(1/x)=(2/(3+(√(13))))=((2(3−(√(13))))/((3+(√(13)))(3−(√(13)))))  =((2(3−(√(13))))/(9−13))=−((3−(√(13)))/2).Therefore,  x_1 +(1/x_1 )=((3+(√(13)))/2)−((3−(√(13)))/2)=(√( 13))
$$\mathrm{Put}\:\sqrt{\mathrm{a}}=\mathrm{x}\Rightarrow\mathrm{x}\geqslant\mathrm{0}.\mathrm{Then}\:,\mathrm{from}\:\mathrm{the}\: \\ $$$$\mathrm{hypothesis}\:\mathrm{a}\sqrt{\mathrm{a}}−\mathrm{3}=\mathrm{10}\sqrt{\mathrm{a}}\:\mathrm{we}\:\mathrm{have} \\ $$$$\mathrm{x}^{\mathrm{3}} −\mathrm{10a}−\mathrm{3}=\mathrm{0} \\ $$$$\Leftrightarrow\left(\mathrm{x}+\mathrm{3}\right)\left(\mathrm{x}^{\mathrm{2}} −\mathrm{3x}−\mathrm{1}\right)=\mathrm{0}.\mathrm{Since}\:\mathrm{x}\geqslant\mathrm{0}, \\ $$$$\:\:\mathrm{x}+\mathrm{3}>\mathrm{0}\Rightarrow\mathrm{x}^{\mathrm{2}} −\mathrm{3x}−\mathrm{1}=\mathrm{0} \\ $$$$\Leftrightarrow\mathrm{x}=\frac{\mathrm{3}+\sqrt{\mathrm{13}}}{\mathrm{2}}\Rightarrow\frac{\mathrm{1}}{\mathrm{x}}=\frac{\mathrm{2}}{\mathrm{3}+\sqrt{\mathrm{13}}}=\frac{\mathrm{2}\left(\mathrm{3}−\sqrt{\mathrm{13}}\right)}{\left(\mathrm{3}+\sqrt{\mathrm{13}}\right)\left(\mathrm{3}−\sqrt{\left.\mathrm{13}\right)}\right.} \\ $$$$=\frac{\mathrm{2}\left(\mathrm{3}−\sqrt{\mathrm{13}}\right)}{\mathrm{9}−\mathrm{13}}=−\frac{\mathrm{3}−\sqrt{\mathrm{13}}}{\mathrm{2}}.\mathrm{Therefore}, \\ $$$$\boldsymbol{\mathrm{x}}_{\mathrm{1}} +\frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}_{\mathrm{1}} }=\frac{\mathrm{3}+\sqrt{\mathrm{13}}}{\mathrm{2}}−\frac{\mathrm{3}−\sqrt{\mathrm{13}}}{\mathrm{2}}=\sqrt{\:\mathrm{13}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *