Menu Close

a-a-b-b-183-and-b-a-a-b-182-What-is-the-value-of-9-5-a-b-




Question Number 191486 by MATHEMATICSAM last updated on 24/Apr/23
a(√a) + b(√b) = 183 and b(√a) + a(√b) = 182  What is the value of (9/5) (a + b) ?
$${a}\sqrt{{a}}\:+\:{b}\sqrt{{b}}\:=\:\mathrm{183}\:\mathrm{and}\:{b}\sqrt{{a}}\:+\:{a}\sqrt{{b}}\:=\:\mathrm{182} \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\frac{\mathrm{9}}{\mathrm{5}}\:\left({a}\:+\:{b}\right)\:? \\ $$
Answered by mr W last updated on 24/Apr/23
let A=(√a)  B=(√b)  AB^2 +A^2 B=182  ⇒AB(A+B)=182  A^3 +B^3 =183  (A+B)^3 −3AB(A+B)=183  (A+B)^3 −3×182=183  ⇒A+B=((183+3×182))^(1/3) =9  a+b=A^2 +B^2 =(A+B)^2 −2AB      =9^2 −2×((182)/9)=((365)/9)  (9/5)(a+b)=(9/5)×((365)/9)=73
$${let}\:{A}=\sqrt{{a}} \\ $$$${B}=\sqrt{{b}} \\ $$$${AB}^{\mathrm{2}} +{A}^{\mathrm{2}} {B}=\mathrm{182} \\ $$$$\Rightarrow{AB}\left({A}+{B}\right)=\mathrm{182} \\ $$$${A}^{\mathrm{3}} +{B}^{\mathrm{3}} =\mathrm{183} \\ $$$$\left({A}+{B}\right)^{\mathrm{3}} −\mathrm{3}{AB}\left({A}+{B}\right)=\mathrm{183} \\ $$$$\left({A}+{B}\right)^{\mathrm{3}} −\mathrm{3}×\mathrm{182}=\mathrm{183} \\ $$$$\Rightarrow{A}+{B}=\sqrt[{\mathrm{3}}]{\mathrm{183}+\mathrm{3}×\mathrm{182}}=\mathrm{9} \\ $$$${a}+{b}={A}^{\mathrm{2}} +{B}^{\mathrm{2}} =\left({A}+{B}\right)^{\mathrm{2}} −\mathrm{2}{AB} \\ $$$$\:\:\:\:=\mathrm{9}^{\mathrm{2}} −\mathrm{2}×\frac{\mathrm{182}}{\mathrm{9}}=\frac{\mathrm{365}}{\mathrm{9}} \\ $$$$\frac{\mathrm{9}}{\mathrm{5}}\left({a}+{b}\right)=\frac{\mathrm{9}}{\mathrm{5}}×\frac{\mathrm{365}}{\mathrm{9}}=\mathrm{73} \\ $$
Commented by mehdee42 last updated on 24/Apr/23
that was perfect
$${that}\:{was}\:{perfect} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *