Menu Close

a-a-b-b-b-c-c-c-a-4-ab-2-bc-2-abc-ca-2-a-2-b-b-2-c-c-2-a-a-a-b-3-b-b-c-3-c-c-a-3-




Question Number 60984 by naka3546 last updated on 28/May/19
(a/(a−b))  +  (b/(b−c))  +  (c/(c−a))  =  4  ab^2  + bc^2  + abc + ca^2   =  a^2 b + b^2 c + c^2 a  ((a/(a−b)))^3   +  ((b/(b−c)))^3   +  ((c/(c−a)))^3   =  ?
aab+bbc+cca=4ab2+bc2+abc+ca2=a2b+b2c+c2a(aab)3+(bbc)3+(cca)3=?
Commented by naka3546 last updated on 28/May/19
73 ?
73?
Commented by Prithwish sen last updated on 28/May/19
ab^2 +bc^2 +abc+ca^2 =a^2 b+b^2 c+c^2 a  ab(a−b)+bc(b−c)+ac(c−a)=abc  (((a−b))/c)+(((b−c))/a)+(((c−a))/b)=1  ((−[(b−c)+(c−a)])/c)+ (((b−c))/a)+(((c−a))/b)=1  (b−c)[(1/a)−(1/c)] +(c−a)[(1/b)−(1/c)] =1  (((b−c)(c−a))/c)[(1/a)−(1/b)]=1  ((abc)/((a−b)(b−c)(c−a)))=−1  Now let   A=(a/((a−b))), B=(b/((b−c))), C=(c/((c−a)))  ∴ A+B+C=4, ABC=−1  we have to calculate  A^3 +B^3 +C^3   please help.
ab2+bc2+abc+ca2=a2b+b2c+c2aab(ab)+bc(bc)+ac(ca)=abc(ab)c+(bc)a+(ca)b=1[(bc)+(ca)]c+(bc)a+(ca)b=1(bc)[1a1c]+(ca)[1b1c]=1(bc)(ca)c[1a1b]=1abc(ab)(bc)(ca)=1NowletA=a(ab),B=b(bc),C=c(ca)A+B+C=4,ABC=1wehavetocalculateA3+B3+C3pleasehelp.
Commented by naka3546 last updated on 28/May/19
(a/(a−b)) + (b/(b−c)) + (c/(c−a))  =  4  ⇒  3 + ((b/(a−b)) + (c/(b−c)) + (a/(c−a)))  =  4  ⇔  ((b/(a−b)) + (c/(b−c)) + (a/(c−a)))  =  1  ⇒  ((abc − (a^2 b + b^2 c + c^2 a))/((ab^2  + bc^2  + ca^2 ) − (a^2 b + b^2 c + c^2 a))) = 1  ⇔  abc  =  ab^2  + bc^2  + ca^2    ...  (i)    abc  + ab^2  + bc^2  + ca^2   =  a^2 b + b^2 c + c^2 a  ⇔  a^2 b + b^2 c + c^2 a  =  2abc   ... (ii)    ⇔  (a−b)(b−c)(c−a)  =  −abc   ... (iii)    ((a/(a−b)))^3  + ((b/(b−c)))^3  + ((c/(c−a)))^3    = ((a/(a−b)) + (b/(b−c)) + (c/(c−a)))^3  − 3((a/(a−b)) + (b/(b−c)) + (c/(c−a)))(((ab)/((a−b)(b−c))) + ((bc)/((b−c)(c−a))) + ((ca)/((c−a)(a−b)))) + 3(((abc)/((a−b)(b−c)(c−a))))  = ((a/(a−b)) + (b/(b−c)) + (c/(c−a)))^3  − 3((a/(a−b)) + (b/(b−c)) + (c/(c−a)))(− ((c−a)/c) − ((a−b)/a) − ((b−c)/b)) + 3(((abc)/((a−b)(b−c)(c−a))))  = ((a/(a−b)) + (b/(b−c)) + (c/(c−a)))^3  + 3((a/(a−b)) + (b/(b−c)) + (c/(c−a)))( ((c−a)/c) + ((a−b)/a) + ((b−c)/b)) + 3(((abc)/(−abc)))  = ((a/(a−b)) + (b/(b−c)) + (c/(c−a)))^3  + 3((a/(a−b)) + (b/(b−c)) + (c/(c−a)))( 3 − ((a/c) + (b/a) + (c/b))) + 3(((abc)/(−abc)))  = ((a/(a−b)) + (b/(b−c)) + (c/(c−a)))^3  + 3((a/(a−b)) + (b/(b−c)) + (c/(c−a)))( 3 − (((a^2 b + b^2 c + c^2 a)/(abc)))) − 3  = ((a/(a−b)) + (b/(b−c)) + (c/(c−a)))^3  + 3((a/(a−b)) + (b/(b−c)) + (c/(c−a)))( 3 − (((2abc)/(abc)))) − 3  = (4)^3  + 3(4)( 3 − 2) − 3  =  64 + 12 − 3  =  73
aab+bbc+cca=43+(bab+cbc+aca)=4(bab+cbc+aca)=1abc(a2b+b2c+c2a)(ab2+bc2+ca2)(a2b+b2c+c2a)=1abc=ab2+bc2+ca2(i)abc+ab2+bc2+ca2=a2b+b2c+c2aa2b+b2c+c2a=2abc(ii)(ab)(bc)(ca)=abc(iii)(aab)3+(bbc)3+(cca)3=(aab+bbc+cca)33(aab+bbc+cca)(ab(ab)(bc)+bc(bc)(ca)+ca(ca)(ab))+3(abc(ab)(bc)(ca))=(aab+bbc+cca)33(aab+bbc+cca)(cacababcb)+3(abc(ab)(bc)(ca))=(aab+bbc+cca)3+3(aab+bbc+cca)(cac+aba+bcb)+3(abcabc)=(aab+bbc+cca)3+3(aab+bbc+cca)(3(ac+ba+cb))+3(abcabc)=(aab+bbc+cca)3+3(aab+bbc+cca)(3(a2b+b2c+c2aabc))3=(aab+bbc+cca)3+3(aab+bbc+cca)(3(2abcabc))3=(4)3+3(4)(32)3=64+123=73
Commented by MJS last updated on 28/May/19
how do you get (i)?  (b/(a−b))+(c/(b−c))+(a/(c−a))≠((abc−(a^2 b+b^2 c+c^2 a))/((ab^2 +bc^2 +ca^2 )−(a^2 b+b^2 c+c^2 a)))
howdoyouget(i)?bab+cbc+acaabc(a2b+b2c+c2a)(ab2+bc2+ca2)(a2b+b2c+c2a)
Commented by Prithwish sen last updated on 28/May/19
great sir
greatsir
Commented by naka3546 last updated on 28/May/19
ab^2  + bc^2  + ca^2  + abc  =  a^2 b + b^2 c + c^2 a  ⇒ (a+b+c)(ab+bc+ca) − (2abc + ab^2  + bc^2  + ca^2 )  =  a^2 b + b^2 c + c^2 a  ⇔  (a+b+c)(ab+bc+ca)  =  2(a^2 b + b^2 c + c^2 a)    (b/(a−b)) + (c/(b−c)) + (a/(c−a))  =  1  ⇒  ((b(b−c)(c−a) + c(a−b)(c−a) + a(a−b)(b−c))/((a−b)(b−c)(c−a)))  =  1  ⇒  ((b^2 c − bc^2  − ab^2  + abc + c^2 a − bc^2  − ca^2  + abc + a^2 b − ab^2  − ca^2  + abc)/((a−b)(b−c)(c−a)))  =  1  ⇒  (((a^2 b + b^2 c + c^2 a) − 2(ab^2  + bc^2  + ca^2 ) + 3abc)/((a−b)(b−c)(c−a)))  =  1  ⇒  (((ab^2  + bc^2  + ca^2  + abc) − 2(ab^2  + bc^2  + ca^2 ) + 3abc)/((a−b)(b−c)(c−a)))  =  1  ⇒  (((4abc) − (a^2 b + b^2 c + c^2 a))/((ab^2  + bc^2  + ca^2 ) − (a^2 b + b^2 c + c^2 a)))  =  1  4abc  =  ab^2  + bc^2  + ca^2   ⇔  a^2 b + b^2 c + c^2 a  =  5abc  May  be  there  are  mistakes .  Typo ,  sir.
ab2+bc2+ca2+abc=a2b+b2c+c2a(a+b+c)(ab+bc+ca)(2abc+ab2+bc2+ca2)=a2b+b2c+c2a(a+b+c)(ab+bc+ca)=2(a2b+b2c+c2a)bab+cbc+aca=1b(bc)(ca)+c(ab)(ca)+a(ab)(bc)(ab)(bc)(ca)=1b2cbc2ab2+abc+c2abc2ca2+abc+a2bab2ca2+abc(ab)(bc)(ca)=1(a2b+b2c+c2a)2(ab2+bc2+ca2)+3abc(ab)(bc)(ca)=1(ab2+bc2+ca2+abc)2(ab2+bc2+ca2)+3abc(ab)(bc)(ca)=1(4abc)(a2b+b2c+c2a)(ab2+bc2+ca2)(a2b+b2c+c2a)=14abc=ab2+bc2+ca2a2b+b2c+c2a=5abcMaybetherearemistakes.Typo,sir.
Commented by naka3546 last updated on 28/May/19
ab^2  + bc^2  + ca^2  + abc  =  a^2 b + b^2 c + c^2 a  ⇒ (a+b+c)(ab+bc+ca) − (2abc + ab^2  + bc^2  + ca^2 )  =  a^2 b + b^2 c + c^2 a  ⇔  (a+b+c)(ab+bc+ca)  =  2(a^2 b + b^2 c + c^2 a)    (b/(a−b)) + (c/(b−c)) + (a/(c−a))  =  1  ⇒  ((b(b−c)(c−a) + c(a−b)(c−a) + a(a−b)(b−c))/((a−b)(b−c)(c−a)))  =  1  ⇒  ((b^2 c − bc^2  − ab^2  + abc + c^2 a − bc^2  − ca^2  + abc + a^2 b − ab^2  − ca^2  + abc)/((a−b)(b−c)(c−a)))  =  1  ⇒  (((a^2 b + b^2 c + c^2 a) − 2(ab^2  + bc^2  + ca^2 ) + 3abc)/((a−b)(b−c)(c−a)))  =  1  ⇒  (((ab^2  + bc^2  + ca^2  + abc) − 2(ab^2  + bc^2  + ca^2 ) + 3abc)/((a−b)(b−c)(c−a)))  =  1  ⇒  (((4abc) − (a^2 b + b^2 c + c^2 a))/((ab^2  + bc^2  + ca^2 ) − (a^2 b + b^2 c + c^2 a)))  =  1  4abc  =  ab^2  + bc^2  + ca^2   ⇔  a^2 b + b^2 c + c^2 a  =  5abc  May  be  there  are  mistakes .  Typo ,  sir.
ab2+bc2+ca2+abc=a2b+b2c+c2a(a+b+c)(ab+bc+ca)(2abc+ab2+bc2+ca2)=a2b+b2c+c2a(a+b+c)(ab+bc+ca)=2(a2b+b2c+c2a)bab+cbc+aca=1b(bc)(ca)+c(ab)(ca)+a(ab)(bc)(ab)(bc)(ca)=1b2cbc2ab2+abc+c2abc2ca2+abc+a2bab2ca2+abc(ab)(bc)(ca)=1(a2b+b2c+c2a)2(ab2+bc2+ca2)+3abc(ab)(bc)(ca)=1(ab2+bc2+ca2+abc)2(ab2+bc2+ca2)+3abc(ab)(bc)(ca)=1(4abc)(a2b+b2c+c2a)(ab2+bc2+ca2)(a2b+b2c+c2a)=14abc=ab2+bc2+ca2a2b+b2c+c2a=5abcMaybetherearemistakes.Typo,sir.
Commented by naka3546 last updated on 28/May/19
37  ?
37?
Commented by MJS last updated on 28/May/19
I′ll have to look into it again...
Illhavetolookintoitagain
Answered by tanmay last updated on 28/May/19
(a/(a−b))+(b/(b−c))+(c/(c−a))=4  (1/(1−(b/a)))+(1/(1−(c/b)))+(1/(1−(a/c)))=4  u=(b/a)  v=(c/b)   w=(a/c)   uvw=1  (1/(1−u))+(1/(1−v))+(1/(1−w))=4  (1/(1−u))−1+(1/(1−v))−1+(1/(1−w))−1=1  (u/(1−u))+(v/(1−v))+(w/(1−w))=1....(1)  ((1/(1−u)))^3 +((1/(1−v)))^3 +((1/(1−w)))^3 =???  ab^2 +bc^2 +ca^2 +abc−a^2 b−b^2 c−c^2 a=0  ab(b−a)+bc(c−b)+ca(a−c)+abc=0  a^2 ×b((b/a)−1)+b^2 ×c((c/b)−1)+c^2 a((a/c)−1)+abc=0  a^3 ×(b/a)((b/a)−1)+b^3 ×(c/b)((c/b)−1)+c^3 ×(a/c)((a/c)−1)+abc=0  a^2 b(u−1)+b^2 c(v−1)+c^2 a(w−1)+abc=0  wait...  u=(b/a)   v=(c/b)   w=(a/c)   uvw=1  u:v:w=(b/a):(c/b):(a/c)=b^2 c:ac^2 :a^2 b  b^2 c=uk   ac^2 =vk   a^2 b=wk  a^3 b^3 c^3 =uvwk^3   abc=(uvw)^(1/3) k  abc=k  wk(u−1)+uk(v−1)+vk(w−1)+k=0  uwk−wk+uvk−uk+vwk−vk+k=0
aab+bbc+cca=411ba+11cb+11ac=4u=bav=cbw=acuvw=111u+11v+11w=411u1+11v1+11w1=1u1u+v1v+w1w=1.(1)(11u)3+(11v)3+(11w)3=???ab2+bc2+ca2+abca2bb2cc2a=0ab(ba)+bc(cb)+ca(ac)+abc=0a2×b(ba1)+b2×c(cb1)+c2a(ac1)+abc=0a3×ba(ba1)+b3×cb(cb1)+c3×ac(ac1)+abc=0a2b(u1)+b2c(v1)+c2a(w1)+abc=0waitu=bav=cbw=acuvw=1u:v:w=ba:cb:ac=b2c:ac2:a2bb2c=ukac2=vka2b=wka3b3c3=uvwk3abc=(uvw)13kabc=kwk(u1)+uk(v1)+vk(w1)+k=0uwkwk+uvkuk+vwkvk+k=0
Commented by Prithwish sen last updated on 28/May/19
great thinking sir.
greatthinkingsir.
Commented by tanmay last updated on 28/May/19
k(uw+uv+vw−u−v−w)=0  k≠0  uw+uv+vw−u−v−k=0  u+v+k=uv+vw+uw  wait...
k(uw+uv+vwuvw)=0k0uw+uv+vwuvk=0u+v+k=uv+vw+uwwait
Answered by MJS last updated on 29/May/19
let b=pa ∧ c=qa  (1) ⇒ (3−2q)p^2 +(3q^2 −3q−2)p+q(3−2q)=0  (2) ⇒ (1−q)p^2 +(q^2 +q−1)p+q(1−q)=0  ⇒  q=.198062 p= { ((.307979)),((.643104)) :}  q=1.55496 p= { ((.307979)),((5.04892)) :}  q=3.24698 p= { ((.643104)),((5.04892)) :}  in all cases we get the result 25  btw (1/(.198...))=5.04...; (1/(.307...))=3.24...; (1/(.643...))=1.55...
letb=pac=qa(1)(32q)p2+(3q23q2)p+q(32q)=0(2)(1q)p2+(q2+q1)p+q(1q)=0q=.198062p={.307979.643104q=1.55496p={.3079795.04892q=3.24698p={.6431045.04892inallcaseswegettheresult25btw1.198=5.04;1.307=3.24;1.643=1.55

Leave a Reply

Your email address will not be published. Required fields are marked *