Question Number 60984 by naka3546 last updated on 28/May/19
$$\frac{{a}}{{a}−{b}}\:\:+\:\:\frac{{b}}{{b}−{c}}\:\:+\:\:\frac{{c}}{{c}−{a}}\:\:=\:\:\mathrm{4} \\ $$$${ab}^{\mathrm{2}} \:+\:{bc}^{\mathrm{2}} \:+\:{abc}\:+\:{ca}^{\mathrm{2}} \:\:=\:\:{a}^{\mathrm{2}} {b}\:+\:{b}^{\mathrm{2}} {c}\:+\:{c}^{\mathrm{2}} {a} \\ $$$$\left(\frac{{a}}{{a}−{b}}\right)^{\mathrm{3}} \:\:+\:\:\left(\frac{{b}}{{b}−{c}}\right)^{\mathrm{3}} \:\:+\:\:\left(\frac{{c}}{{c}−{a}}\right)^{\mathrm{3}} \:\:=\:\:? \\ $$$$ \\ $$
Commented by naka3546 last updated on 28/May/19
$$\mathrm{73}\:? \\ $$
Commented by Prithwish sen last updated on 28/May/19
$$\mathrm{ab}^{\mathrm{2}} +\mathrm{bc}^{\mathrm{2}} +\mathrm{abc}+\mathrm{ca}^{\mathrm{2}} =\mathrm{a}^{\mathrm{2}} \mathrm{b}+\mathrm{b}^{\mathrm{2}} \mathrm{c}+\mathrm{c}^{\mathrm{2}} \mathrm{a} \\ $$$$\mathrm{ab}\left(\mathrm{a}−\mathrm{b}\right)+\mathrm{bc}\left(\mathrm{b}−\mathrm{c}\right)+\mathrm{ac}\left(\mathrm{c}−\mathrm{a}\right)=\mathrm{abc} \\ $$$$\frac{\left(\mathrm{a}−\mathrm{b}\right)}{\mathrm{c}}+\frac{\left(\mathrm{b}−\mathrm{c}\right)}{\mathrm{a}}+\frac{\left(\mathrm{c}−\mathrm{a}\right)}{\mathrm{b}}=\mathrm{1} \\ $$$$\frac{−\left[\left(\mathrm{b}−\mathrm{c}\right)+\left(\mathrm{c}−\mathrm{a}\right)\right]}{\mathrm{c}}+\:\frac{\left(\mathrm{b}−\mathrm{c}\right)}{\mathrm{a}}+\frac{\left(\mathrm{c}−\mathrm{a}\right)}{\mathrm{b}}=\mathrm{1} \\ $$$$\left(\mathrm{b}−\mathrm{c}\right)\left[\frac{\mathrm{1}}{\mathrm{a}}−\frac{\mathrm{1}}{\mathrm{c}}\right]\:+\left(\mathrm{c}−\mathrm{a}\right)\left[\frac{\mathrm{1}}{\mathrm{b}}−\frac{\mathrm{1}}{\mathrm{c}}\right]\:=\mathrm{1} \\ $$$$\frac{\left(\mathrm{b}−\mathrm{c}\right)\left(\mathrm{c}−\mathrm{a}\right)}{\mathrm{c}}\left[\frac{\mathrm{1}}{\mathrm{a}}−\frac{\mathrm{1}}{\mathrm{b}}\right]=\mathrm{1} \\ $$$$\frac{\mathrm{abc}}{\left(\mathrm{a}−\mathrm{b}\right)\left(\mathrm{b}−\mathrm{c}\right)\left(\mathrm{c}−\mathrm{a}\right)}=−\mathrm{1} \\ $$$$\mathrm{Now}\:\mathrm{let}\: \\ $$$$\mathrm{A}=\frac{\mathrm{a}}{\left(\mathrm{a}−\mathrm{b}\right)},\:\mathrm{B}=\frac{\mathrm{b}}{\left(\mathrm{b}−\mathrm{c}\right)},\:\mathrm{C}=\frac{\mathrm{c}}{\left(\mathrm{c}−\mathrm{a}\right)} \\ $$$$\therefore\:\mathrm{A}+\mathrm{B}+\mathrm{C}=\mathrm{4},\:\mathrm{ABC}=−\mathrm{1} \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{to}\:\mathrm{calculate} \\ $$$$\mathrm{A}^{\mathrm{3}} +\mathrm{B}^{\mathrm{3}} +\mathrm{C}^{\mathrm{3}} \\ $$$$\mathrm{please}\:\mathrm{help}. \\ $$$$ \\ $$
Commented by naka3546 last updated on 28/May/19
$$\frac{{a}}{{a}−{b}}\:+\:\frac{{b}}{{b}−{c}}\:+\:\frac{{c}}{{c}−{a}}\:\:=\:\:\mathrm{4} \\ $$$$\Rightarrow\:\:\mathrm{3}\:+\:\left(\frac{{b}}{{a}−{b}}\:+\:\frac{{c}}{{b}−{c}}\:+\:\frac{{a}}{{c}−{a}}\right)\:\:=\:\:\mathrm{4} \\ $$$$\Leftrightarrow\:\:\left(\frac{{b}}{{a}−{b}}\:+\:\frac{{c}}{{b}−{c}}\:+\:\frac{{a}}{{c}−{a}}\right)\:\:=\:\:\mathrm{1} \\ $$$$\Rightarrow\:\:\frac{{abc}\:−\:\left({a}^{\mathrm{2}} {b}\:+\:{b}^{\mathrm{2}} {c}\:+\:{c}^{\mathrm{2}} {a}\right)}{\left({ab}^{\mathrm{2}} \:+\:{bc}^{\mathrm{2}} \:+\:{ca}^{\mathrm{2}} \right)\:−\:\left({a}^{\mathrm{2}} {b}\:+\:{b}^{\mathrm{2}} {c}\:+\:{c}^{\mathrm{2}} {a}\right)}\:=\:\mathrm{1} \\ $$$$\Leftrightarrow\:\:{abc}\:\:=\:\:{ab}^{\mathrm{2}} \:+\:{bc}^{\mathrm{2}} \:+\:{ca}^{\mathrm{2}} \:\:\:…\:\:\left({i}\right) \\ $$$$ \\ $$$${abc}\:\:+\:{ab}^{\mathrm{2}} \:+\:{bc}^{\mathrm{2}} \:+\:{ca}^{\mathrm{2}} \:\:=\:\:{a}^{\mathrm{2}} {b}\:+\:{b}^{\mathrm{2}} {c}\:+\:{c}^{\mathrm{2}} {a} \\ $$$$\Leftrightarrow\:\:{a}^{\mathrm{2}} {b}\:+\:{b}^{\mathrm{2}} {c}\:+\:{c}^{\mathrm{2}} {a}\:\:=\:\:\mathrm{2}{abc}\:\:\:…\:\left({ii}\right) \\ $$$$ \\ $$$$\Leftrightarrow\:\:\left({a}−{b}\right)\left({b}−{c}\right)\left({c}−{a}\right)\:\:=\:\:−{abc}\:\:\:…\:\left({iii}\right) \\ $$$$ \\ $$$$\left(\frac{{a}}{{a}−{b}}\right)^{\mathrm{3}} \:+\:\left(\frac{{b}}{{b}−{c}}\right)^{\mathrm{3}} \:+\:\left(\frac{{c}}{{c}−{a}}\right)^{\mathrm{3}} \: \\ $$$$=\:\left(\frac{{a}}{{a}−{b}}\:+\:\frac{{b}}{{b}−{c}}\:+\:\frac{{c}}{{c}−{a}}\right)^{\mathrm{3}} \:−\:\mathrm{3}\left(\frac{{a}}{{a}−{b}}\:+\:\frac{{b}}{{b}−{c}}\:+\:\frac{{c}}{{c}−{a}}\right)\left(\frac{{ab}}{\left({a}−{b}\right)\left({b}−{c}\right)}\:+\:\frac{{bc}}{\left({b}−{c}\right)\left({c}−{a}\right)}\:+\:\frac{{ca}}{\left({c}−{a}\right)\left({a}−{b}\right)}\right)\:+\:\mathrm{3}\left(\frac{{abc}}{\left({a}−{b}\right)\left({b}−{c}\right)\left({c}−{a}\right)}\right) \\ $$$$=\:\left(\frac{{a}}{{a}−{b}}\:+\:\frac{{b}}{{b}−{c}}\:+\:\frac{{c}}{{c}−{a}}\right)^{\mathrm{3}} \:−\:\mathrm{3}\left(\frac{{a}}{{a}−{b}}\:+\:\frac{{b}}{{b}−{c}}\:+\:\frac{{c}}{{c}−{a}}\right)\left(−\:\frac{{c}−{a}}{{c}}\:−\:\frac{{a}−{b}}{{a}}\:−\:\frac{{b}−{c}}{{b}}\right)\:+\:\mathrm{3}\left(\frac{{abc}}{\left({a}−{b}\right)\left({b}−{c}\right)\left({c}−{a}\right)}\right) \\ $$$$=\:\left(\frac{{a}}{{a}−{b}}\:+\:\frac{{b}}{{b}−{c}}\:+\:\frac{{c}}{{c}−{a}}\right)^{\mathrm{3}} \:+\:\mathrm{3}\left(\frac{{a}}{{a}−{b}}\:+\:\frac{{b}}{{b}−{c}}\:+\:\frac{{c}}{{c}−{a}}\right)\left(\:\frac{{c}−{a}}{{c}}\:+\:\frac{{a}−{b}}{{a}}\:+\:\frac{{b}−{c}}{{b}}\right)\:+\:\mathrm{3}\left(\frac{{abc}}{−{abc}}\right) \\ $$$$=\:\left(\frac{{a}}{{a}−{b}}\:+\:\frac{{b}}{{b}−{c}}\:+\:\frac{{c}}{{c}−{a}}\right)^{\mathrm{3}} \:+\:\mathrm{3}\left(\frac{{a}}{{a}−{b}}\:+\:\frac{{b}}{{b}−{c}}\:+\:\frac{{c}}{{c}−{a}}\right)\left(\:\mathrm{3}\:−\:\left(\frac{{a}}{{c}}\:+\:\frac{{b}}{{a}}\:+\:\frac{{c}}{{b}}\right)\right)\:+\:\mathrm{3}\left(\frac{{abc}}{−{abc}}\right) \\ $$$$=\:\left(\frac{{a}}{{a}−{b}}\:+\:\frac{{b}}{{b}−{c}}\:+\:\frac{{c}}{{c}−{a}}\right)^{\mathrm{3}} \:+\:\mathrm{3}\left(\frac{{a}}{{a}−{b}}\:+\:\frac{{b}}{{b}−{c}}\:+\:\frac{{c}}{{c}−{a}}\right)\left(\:\mathrm{3}\:−\:\left(\frac{{a}^{\mathrm{2}} {b}\:+\:{b}^{\mathrm{2}} {c}\:+\:{c}^{\mathrm{2}} {a}}{{abc}}\right)\right)\:−\:\mathrm{3} \\ $$$$=\:\left(\frac{{a}}{{a}−{b}}\:+\:\frac{{b}}{{b}−{c}}\:+\:\frac{{c}}{{c}−{a}}\right)^{\mathrm{3}} \:+\:\mathrm{3}\left(\frac{{a}}{{a}−{b}}\:+\:\frac{{b}}{{b}−{c}}\:+\:\frac{{c}}{{c}−{a}}\right)\left(\:\mathrm{3}\:−\:\left(\frac{\mathrm{2}{abc}}{{abc}}\right)\right)\:−\:\mathrm{3} \\ $$$$=\:\left(\mathrm{4}\right)^{\mathrm{3}} \:+\:\mathrm{3}\left(\mathrm{4}\right)\left(\:\mathrm{3}\:−\:\mathrm{2}\right)\:−\:\mathrm{3} \\ $$$$=\:\:\mathrm{64}\:+\:\mathrm{12}\:−\:\mathrm{3} \\ $$$$=\:\:\mathrm{73} \\ $$
Commented by MJS last updated on 28/May/19
$$\mathrm{how}\:\mathrm{do}\:\mathrm{you}\:\mathrm{get}\:\left({i}\right)? \\ $$$$\frac{{b}}{{a}−{b}}+\frac{{c}}{{b}−{c}}+\frac{{a}}{{c}−{a}}\neq\frac{{abc}−\left({a}^{\mathrm{2}} {b}+{b}^{\mathrm{2}} {c}+{c}^{\mathrm{2}} {a}\right)}{\left({ab}^{\mathrm{2}} +{bc}^{\mathrm{2}} +{ca}^{\mathrm{2}} \right)−\left({a}^{\mathrm{2}} {b}+{b}^{\mathrm{2}} {c}+{c}^{\mathrm{2}} {a}\right)} \\ $$
Commented by Prithwish sen last updated on 28/May/19
$$\mathrm{great}\:\mathrm{sir} \\ $$
Commented by naka3546 last updated on 28/May/19
$${ab}^{\mathrm{2}} \:+\:{bc}^{\mathrm{2}} \:+\:{ca}^{\mathrm{2}} \:+\:{abc}\:\:=\:\:{a}^{\mathrm{2}} {b}\:+\:{b}^{\mathrm{2}} {c}\:+\:{c}^{\mathrm{2}} {a} \\ $$$$\Rightarrow\:\left({a}+{b}+{c}\right)\left({ab}+{bc}+{ca}\right)\:−\:\left(\mathrm{2}{abc}\:+\:{ab}^{\mathrm{2}} \:+\:{bc}^{\mathrm{2}} \:+\:{ca}^{\mathrm{2}} \right)\:\:=\:\:{a}^{\mathrm{2}} {b}\:+\:{b}^{\mathrm{2}} {c}\:+\:{c}^{\mathrm{2}} {a} \\ $$$$\Leftrightarrow\:\:\left({a}+{b}+{c}\right)\left({ab}+{bc}+{ca}\right)\:\:=\:\:\mathrm{2}\left({a}^{\mathrm{2}} {b}\:+\:{b}^{\mathrm{2}} {c}\:+\:{c}^{\mathrm{2}} {a}\right) \\ $$$$ \\ $$$$\frac{{b}}{{a}−{b}}\:+\:\frac{{c}}{{b}−{c}}\:+\:\frac{{a}}{{c}−{a}}\:\:=\:\:\mathrm{1} \\ $$$$\Rightarrow\:\:\frac{{b}\left({b}−{c}\right)\left({c}−{a}\right)\:+\:{c}\left({a}−{b}\right)\left({c}−{a}\right)\:+\:{a}\left({a}−{b}\right)\left({b}−{c}\right)}{\left({a}−{b}\right)\left({b}−{c}\right)\left({c}−{a}\right)}\:\:=\:\:\mathrm{1} \\ $$$$\Rightarrow\:\:\frac{{b}^{\mathrm{2}} {c}\:−\:{bc}^{\mathrm{2}} \:−\:{ab}^{\mathrm{2}} \:+\:{abc}\:+\:{c}^{\mathrm{2}} {a}\:−\:{bc}^{\mathrm{2}} \:−\:{ca}^{\mathrm{2}} \:+\:{abc}\:+\:{a}^{\mathrm{2}} {b}\:−\:{ab}^{\mathrm{2}} \:−\:{ca}^{\mathrm{2}} \:+\:{abc}}{\left({a}−{b}\right)\left({b}−{c}\right)\left({c}−{a}\right)}\:\:=\:\:\mathrm{1} \\ $$$$\Rightarrow\:\:\frac{\left({a}^{\mathrm{2}} {b}\:+\:{b}^{\mathrm{2}} {c}\:+\:{c}^{\mathrm{2}} {a}\right)\:−\:\mathrm{2}\left({ab}^{\mathrm{2}} \:+\:{bc}^{\mathrm{2}} \:+\:{ca}^{\mathrm{2}} \right)\:+\:\mathrm{3}{abc}}{\left({a}−{b}\right)\left({b}−{c}\right)\left({c}−{a}\right)}\:\:=\:\:\mathrm{1} \\ $$$$\Rightarrow\:\:\frac{\left({ab}^{\mathrm{2}} \:+\:{bc}^{\mathrm{2}} \:+\:{ca}^{\mathrm{2}} \:+\:{abc}\right)\:−\:\mathrm{2}\left({ab}^{\mathrm{2}} \:+\:{bc}^{\mathrm{2}} \:+\:{ca}^{\mathrm{2}} \right)\:+\:\mathrm{3}{abc}}{\left({a}−{b}\right)\left({b}−{c}\right)\left({c}−{a}\right)}\:\:=\:\:\mathrm{1} \\ $$$$\Rightarrow\:\:\frac{\left(\mathrm{4}{abc}\right)\:−\:\left({a}^{\mathrm{2}} {b}\:+\:{b}^{\mathrm{2}} {c}\:+\:{c}^{\mathrm{2}} {a}\right)}{\left({ab}^{\mathrm{2}} \:+\:{bc}^{\mathrm{2}} \:+\:{ca}^{\mathrm{2}} \right)\:−\:\left({a}^{\mathrm{2}} {b}\:+\:{b}^{\mathrm{2}} {c}\:+\:{c}^{\mathrm{2}} {a}\right)}\:\:=\:\:\mathrm{1} \\ $$$$\mathrm{4}{abc}\:\:=\:\:{ab}^{\mathrm{2}} \:+\:{bc}^{\mathrm{2}} \:+\:{ca}^{\mathrm{2}} \\ $$$$\Leftrightarrow\:\:{a}^{\mathrm{2}} {b}\:+\:{b}^{\mathrm{2}} {c}\:+\:{c}^{\mathrm{2}} {a}\:\:=\:\:\mathrm{5}{abc} \\ $$$${May}\:\:{be}\:\:{there}\:\:{are}\:\:{mistakes}\:. \\ $$$${Typo}\:,\:\:{sir}. \\ $$
Commented by naka3546 last updated on 28/May/19
$${ab}^{\mathrm{2}} \:+\:{bc}^{\mathrm{2}} \:+\:{ca}^{\mathrm{2}} \:+\:{abc}\:\:=\:\:{a}^{\mathrm{2}} {b}\:+\:{b}^{\mathrm{2}} {c}\:+\:{c}^{\mathrm{2}} {a} \\ $$$$\Rightarrow\:\left({a}+{b}+{c}\right)\left({ab}+{bc}+{ca}\right)\:−\:\left(\mathrm{2}{abc}\:+\:{ab}^{\mathrm{2}} \:+\:{bc}^{\mathrm{2}} \:+\:{ca}^{\mathrm{2}} \right)\:\:=\:\:{a}^{\mathrm{2}} {b}\:+\:{b}^{\mathrm{2}} {c}\:+\:{c}^{\mathrm{2}} {a} \\ $$$$\Leftrightarrow\:\:\left({a}+{b}+{c}\right)\left({ab}+{bc}+{ca}\right)\:\:=\:\:\mathrm{2}\left({a}^{\mathrm{2}} {b}\:+\:{b}^{\mathrm{2}} {c}\:+\:{c}^{\mathrm{2}} {a}\right) \\ $$$$ \\ $$$$\frac{{b}}{{a}−{b}}\:+\:\frac{{c}}{{b}−{c}}\:+\:\frac{{a}}{{c}−{a}}\:\:=\:\:\mathrm{1} \\ $$$$\Rightarrow\:\:\frac{{b}\left({b}−{c}\right)\left({c}−{a}\right)\:+\:{c}\left({a}−{b}\right)\left({c}−{a}\right)\:+\:{a}\left({a}−{b}\right)\left({b}−{c}\right)}{\left({a}−{b}\right)\left({b}−{c}\right)\left({c}−{a}\right)}\:\:=\:\:\mathrm{1} \\ $$$$\Rightarrow\:\:\frac{{b}^{\mathrm{2}} {c}\:−\:{bc}^{\mathrm{2}} \:−\:{ab}^{\mathrm{2}} \:+\:{abc}\:+\:{c}^{\mathrm{2}} {a}\:−\:{bc}^{\mathrm{2}} \:−\:{ca}^{\mathrm{2}} \:+\:{abc}\:+\:{a}^{\mathrm{2}} {b}\:−\:{ab}^{\mathrm{2}} \:−\:{ca}^{\mathrm{2}} \:+\:{abc}}{\left({a}−{b}\right)\left({b}−{c}\right)\left({c}−{a}\right)}\:\:=\:\:\mathrm{1} \\ $$$$\Rightarrow\:\:\frac{\left({a}^{\mathrm{2}} {b}\:+\:{b}^{\mathrm{2}} {c}\:+\:{c}^{\mathrm{2}} {a}\right)\:−\:\mathrm{2}\left({ab}^{\mathrm{2}} \:+\:{bc}^{\mathrm{2}} \:+\:{ca}^{\mathrm{2}} \right)\:+\:\mathrm{3}{abc}}{\left({a}−{b}\right)\left({b}−{c}\right)\left({c}−{a}\right)}\:\:=\:\:\mathrm{1} \\ $$$$\Rightarrow\:\:\frac{\left({ab}^{\mathrm{2}} \:+\:{bc}^{\mathrm{2}} \:+\:{ca}^{\mathrm{2}} \:+\:{abc}\right)\:−\:\mathrm{2}\left({ab}^{\mathrm{2}} \:+\:{bc}^{\mathrm{2}} \:+\:{ca}^{\mathrm{2}} \right)\:+\:\mathrm{3}{abc}}{\left({a}−{b}\right)\left({b}−{c}\right)\left({c}−{a}\right)}\:\:=\:\:\mathrm{1} \\ $$$$\Rightarrow\:\:\frac{\left(\mathrm{4}{abc}\right)\:−\:\left({a}^{\mathrm{2}} {b}\:+\:{b}^{\mathrm{2}} {c}\:+\:{c}^{\mathrm{2}} {a}\right)}{\left({ab}^{\mathrm{2}} \:+\:{bc}^{\mathrm{2}} \:+\:{ca}^{\mathrm{2}} \right)\:−\:\left({a}^{\mathrm{2}} {b}\:+\:{b}^{\mathrm{2}} {c}\:+\:{c}^{\mathrm{2}} {a}\right)}\:\:=\:\:\mathrm{1} \\ $$$$\mathrm{4}{abc}\:\:=\:\:{ab}^{\mathrm{2}} \:+\:{bc}^{\mathrm{2}} \:+\:{ca}^{\mathrm{2}} \\ $$$$\Leftrightarrow\:\:{a}^{\mathrm{2}} {b}\:+\:{b}^{\mathrm{2}} {c}\:+\:{c}^{\mathrm{2}} {a}\:\:=\:\:\mathrm{5}{abc} \\ $$$${May}\:\:{be}\:\:{there}\:\:{are}\:\:{mistakes}\:. \\ $$$${Typo}\:,\:\:{sir}. \\ $$
Commented by naka3546 last updated on 28/May/19
$$\mathrm{37}\:\:? \\ $$
Commented by MJS last updated on 28/May/19
$$\mathrm{I}'\mathrm{ll}\:\mathrm{have}\:\mathrm{to}\:\mathrm{look}\:\mathrm{into}\:\mathrm{it}\:\mathrm{again}… \\ $$
Answered by tanmay last updated on 28/May/19
$$\frac{{a}}{{a}−{b}}+\frac{{b}}{{b}−{c}}+\frac{{c}}{{c}−{a}}=\mathrm{4} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}−\frac{{b}}{{a}}}+\frac{\mathrm{1}}{\mathrm{1}−\frac{{c}}{{b}}}+\frac{\mathrm{1}}{\mathrm{1}−\frac{{a}}{{c}}}=\mathrm{4} \\ $$$${u}=\frac{{b}}{{a}}\:\:{v}=\frac{{c}}{{b}}\:\:\:{w}=\frac{{a}}{{c}}\:\:\:{uvw}=\mathrm{1} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}−{u}}+\frac{\mathrm{1}}{\mathrm{1}−{v}}+\frac{\mathrm{1}}{\mathrm{1}−{w}}=\mathrm{4} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}−{u}}−\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}−{v}}−\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}−{w}}−\mathrm{1}=\mathrm{1} \\ $$$$\frac{{u}}{\mathrm{1}−{u}}+\frac{{v}}{\mathrm{1}−{v}}+\frac{{w}}{\mathrm{1}−{w}}=\mathrm{1}….\left(\mathrm{1}\right) \\ $$$$\left(\frac{\mathrm{1}}{\mathrm{1}−{u}}\right)^{\mathrm{3}} +\left(\frac{\mathrm{1}}{\mathrm{1}−{v}}\right)^{\mathrm{3}} +\left(\frac{\mathrm{1}}{\mathrm{1}−{w}}\right)^{\mathrm{3}} =??? \\ $$$${ab}^{\mathrm{2}} +{bc}^{\mathrm{2}} +{ca}^{\mathrm{2}} +{abc}−{a}^{\mathrm{2}} {b}−{b}^{\mathrm{2}} {c}−{c}^{\mathrm{2}} {a}=\mathrm{0} \\ $$$${ab}\left({b}−{a}\right)+{bc}\left({c}−{b}\right)+{ca}\left({a}−{c}\right)+{abc}=\mathrm{0} \\ $$$${a}^{\mathrm{2}} ×{b}\left(\frac{{b}}{{a}}−\mathrm{1}\right)+{b}^{\mathrm{2}} ×{c}\left(\frac{{c}}{{b}}−\mathrm{1}\right)+{c}^{\mathrm{2}} {a}\left(\frac{{a}}{{c}}−\mathrm{1}\right)+{abc}=\mathrm{0} \\ $$$${a}^{\mathrm{3}} ×\frac{{b}}{{a}}\left(\frac{{b}}{{a}}−\mathrm{1}\right)+{b}^{\mathrm{3}} ×\frac{{c}}{{b}}\left(\frac{{c}}{{b}}−\mathrm{1}\right)+{c}^{\mathrm{3}} ×\frac{{a}}{{c}}\left(\frac{{a}}{{c}}−\mathrm{1}\right)+{abc}=\mathrm{0} \\ $$$${a}^{\mathrm{2}} {b}\left({u}−\mathrm{1}\right)+{b}^{\mathrm{2}} {c}\left({v}−\mathrm{1}\right)+{c}^{\mathrm{2}} {a}\left({w}−\mathrm{1}\right)+{abc}=\mathrm{0} \\ $$$${wait}… \\ $$$${u}=\frac{{b}}{{a}}\:\:\:{v}=\frac{{c}}{{b}}\:\:\:{w}=\frac{{a}}{{c}}\:\:\:{uvw}=\mathrm{1} \\ $$$${u}:{v}:{w}=\frac{{b}}{{a}}:\frac{{c}}{{b}}:\frac{{a}}{{c}}={b}^{\mathrm{2}} {c}:{ac}^{\mathrm{2}} :{a}^{\mathrm{2}} {b} \\ $$$${b}^{\mathrm{2}} {c}={uk}\:\:\:{ac}^{\mathrm{2}} ={vk}\:\:\:{a}^{\mathrm{2}} {b}={wk} \\ $$$${a}^{\mathrm{3}} {b}^{\mathrm{3}} {c}^{\mathrm{3}} ={uvwk}^{\mathrm{3}} \\ $$$${abc}=\left({uvw}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} {k} \\ $$$${abc}={k} \\ $$$${wk}\left({u}−\mathrm{1}\right)+{uk}\left({v}−\mathrm{1}\right)+{vk}\left({w}−\mathrm{1}\right)+{k}=\mathrm{0} \\ $$$${uwk}−{wk}+{uvk}−{uk}+{vwk}−{vk}+{k}=\mathrm{0} \\ $$
Commented by Prithwish sen last updated on 28/May/19
$$\mathrm{great}\:\mathrm{thinking}\:\mathrm{sir}. \\ $$
Commented by tanmay last updated on 28/May/19
$${k}\left({uw}+{uv}+{vw}−{u}−{v}−{w}\right)=\mathrm{0} \\ $$$${k}\neq\mathrm{0} \\ $$$${uw}+{uv}+{vw}−{u}−{v}−{k}=\mathrm{0} \\ $$$${u}+{v}+{k}={uv}+{vw}+{uw} \\ $$$${wait}… \\ $$
Answered by MJS last updated on 29/May/19
$$\mathrm{let}\:{b}={pa}\:\wedge\:{c}={qa} \\ $$$$\left(\mathrm{1}\right)\:\Rightarrow\:\left(\mathrm{3}−\mathrm{2}{q}\right){p}^{\mathrm{2}} +\left(\mathrm{3}{q}^{\mathrm{2}} −\mathrm{3}{q}−\mathrm{2}\right){p}+{q}\left(\mathrm{3}−\mathrm{2}{q}\right)=\mathrm{0} \\ $$$$\left(\mathrm{2}\right)\:\Rightarrow\:\left(\mathrm{1}−{q}\right){p}^{\mathrm{2}} +\left({q}^{\mathrm{2}} +{q}−\mathrm{1}\right){p}+{q}\left(\mathrm{1}−{q}\right)=\mathrm{0} \\ $$$$\Rightarrow \\ $$$${q}=.\mathrm{198062}\:{p}=\begin{cases}{.\mathrm{307979}}\\{.\mathrm{643104}}\end{cases} \\ $$$${q}=\mathrm{1}.\mathrm{55496}\:{p}=\begin{cases}{.\mathrm{307979}}\\{\mathrm{5}.\mathrm{04892}}\end{cases} \\ $$$${q}=\mathrm{3}.\mathrm{24698}\:{p}=\begin{cases}{.\mathrm{643104}}\\{\mathrm{5}.\mathrm{04892}}\end{cases} \\ $$$$\mathrm{in}\:\mathrm{all}\:\mathrm{cases}\:\mathrm{we}\:\mathrm{get}\:\mathrm{the}\:\mathrm{result}\:\mathrm{25} \\ $$$$\mathrm{btw}\:\frac{\mathrm{1}}{.\mathrm{198}…}=\mathrm{5}.\mathrm{04}…;\:\frac{\mathrm{1}}{.\mathrm{307}…}=\mathrm{3}.\mathrm{24}…;\:\frac{\mathrm{1}}{.\mathrm{643}…}=\mathrm{1}.\mathrm{55}… \\ $$