Menu Close

a-A-body-of-mass-m-initially-at-rest-at-a-point-O-on-a-smooth-horizontal-surface-A-horizontal-force-F-is-applied-to-the-body-and-caused-it-to-move-in-a-straight-line-accross-the-surface-The-magnit




Question Number 13302 by tawa tawa last updated on 17/May/17
(a)  A body of mass m initially at rest at a point O on a smooth horizontal surface.  A horizontal force F is applied to the body and caused it to move in a straight  line accross the surface. The magnitude of F is given by F = (1/(s + α)), Where S is  the distance of the body from O and α is the positive constant. If v is the speed  of the body at any moment, Show that S = α (e^((1/2)mv^2 ) − 1).   (b)  If  F = 15s + 4  and  m = 1 kg  and  the body is initially at rest at point O.  Determine,  (i)  v  when  s = 2m        (ii) s  when  v = 8m/s
(a)AbodyofmassminitiallyatrestatapointOonasmoothhorizontalsurface.AhorizontalforceFisappliedtothebodyandcausedittomoveinastraightlineaccrossthesurface.ThemagnitudeofFisgivenbyF=1s+α,WhereSisthedistanceofthebodyfromOandαisthepositiveconstant.Ifvisthespeedofthebodyatanymoment,ShowthatS=α(e12mv21).(b)IfF=15s+4andm=1kgandthebodyisinitiallyatrestatpointO.Determine,(i)vwhens=2m(ii)swhenv=8m/s
Answered by mrW1 last updated on 17/May/17
(a)  F=ma  a=(dv/dt)=(dv/ds)×(ds/dt)=v(dv/ds)  F=(1/(s+α))  ⇒(1/(s+α))=mv(dv/ds)  ⇒(ds/(s+α))=mvdv  ⇒ln (s+α)=(1/2)mv^2 +C  at s=0, v=0  ⇒ln α=C  ⇒ln (s+α)=(1/2)mv^2 +ln α  ⇒ln (s+α)−ln α=(1/2)mv^2   ⇒ln ((s/α)+1)=(1/2)mv^2   ⇒(s/α)+1=e^((1/2)mv^2 )   ⇒s=α(e^((1/2)mv^2 ) −1)    (b)  F=ma=mv(dv/ds)  15s+4=v(dv/ds)  (15s+4)ds=vdv  (1/(30))(15s+4)^2 =(1/2)v^2 +C  at s=0, v=0  ⇒((16)/(30))=C  (1/(30))(15s+4)^2 =(1/2)v^2 +((16)/(30))  (15s+4)^2 =15v^2 +16  15v^2 =(15s+4)^2 −4^2 =15s(15s+8)  v^2 =s(15s+8)  ⇒v=(√(s(15s+8)))    (i)  s=2m⇒v=(√(2(30+8)))=2(√(19))=8.7 m/s  (ii)  8=(√(s(15s+8)))  15s^2 +8s−64=0  s=((−8+(√(64+4×15×64)))/(2×15))=((−4+4(√(61)))/(15))=1.82 m
(a)F=maa=dvdt=dvds×dsdt=vdvdsF=1s+α1s+α=mvdvdsdss+α=mvdvln(s+α)=12mv2+Cats=0,v=0lnα=Cln(s+α)=12mv2+lnαln(s+α)lnα=12mv2ln(sα+1)=12mv2sα+1=e12mv2s=α(e12mv21)(b)F=ma=mvdvds15s+4=vdvds(15s+4)ds=vdv130(15s+4)2=12v2+Cats=0,v=01630=C130(15s+4)2=12v2+1630(15s+4)2=15v2+1615v2=(15s+4)242=15s(15s+8)v2=s(15s+8)v=s(15s+8)(i)s=2mv=2(30+8)=219=8.7m/s(ii)8=s(15s+8)15s2+8s64=0s=8+64+4×15×642×15=4+46115=1.82m
Commented by tawa tawa last updated on 18/May/17
Wow, God bless you sir. I really appreciate.
Wow,Godblessyousir.Ireallyappreciate.
Answered by ajfour last updated on 18/May/17
(a)  △K=W=∫_0 ^(  s) F^� .ds^�  =∫_0 ^(  s) (ds/(s+α))  (1/2)mv^2 =ln (1+(s/𝛂))  s=𝛂(e^((1/2) mv^2 ) −1) .    (b)  (1/2)mv^2 =∫_0 ^(  s) (15s+4)ds                 =((15)/2)s^2 +4s  v^2 =15s^2 +8s  for m=1kg and s=2m  v^2 =15(4)+8(2)  v=2(√(19)) m/s ≈ 8.72 m/s  when v=8m/s  64=15s^2 +8s  15s^2 +8s−64=0  s=((−8+(√(64+60×64)))/(30))  s=((−8+8(√(61)))/(30)) ≈ 1.82 m
(a)K=W=0sF¯.ds¯=0sdss+α12mv2=ln(1+sα)s=α(e12mv21).(b)12mv2=0s(15s+4)ds=152s2+4sv2=15s2+8sform=1kgands=2mv2=15(4)+8(2)v=219m/s8.72m/swhenv=8m/s64=15s2+8s15s2+8s64=0s=8+64+60×6430s=8+861301.82m
Commented by tawa tawa last updated on 18/May/17
God bless you sir. i really appreciate.
Godblessyousir.ireallyappreciate.
Commented by mrW1 last updated on 18/May/17
wonderful!
wonderful!

Leave a Reply

Your email address will not be published. Required fields are marked *