Menu Close

a-and-b-are-roots-of-this-equation-x-2018-2x-1-0-Calculate-the-value-of-2-a-b-a-2-b-2-a-3-b-3-a-2017-b-2017-




Question Number 58501 by naka3546 last updated on 24/Apr/19
a  and  b  are  roots  of  this  equation  :          x^(2018)  − 2x + 1  =  0  Calculate  the  value   of    2 + (a+b) + (a^2 +b^2 ) + (a^3  + b^3 ) + … + (a^(2017)  + b^(2017) )
aandbarerootsofthisequation:x20182x+1=0Calculatethevalueof2+(a+b)+(a2+b2)+(a3+b3)++(a2017+b2017)
Answered by mr W last updated on 24/Apr/19
a^(2018) −2a+1=0  1−a^(2018) =2−2a=2(1−a)  assume a≠1,b≠1,  ⇒((1−a^(2018) )/(1−a))=2  similarly  ⇒((1−b^(2018) )/(1−b))=2  1+a+a^2 +...+a^(2017) =((1−a^(2018) )/(1−a))  1+b+b^2 +...+b^(2017) =((1−b^(2018) )/(1−b))  LHS=((1−a^(2018) )/(1−a))+((1−b^(2018) )/(1−b))  =2+2  =4
a20182a+1=01a2018=22a=2(1a)assumea1,b1,1a20181a=2similarly1b20181b=21+a+a2++a2017=1a20181a1+b+b2++b2017=1b20181bLHS=1a20181a+1b20181b=2+2=4
Commented by MJS last updated on 24/Apr/19
but one root of x^(2n) −2x+1=0 is 1
butonerootofx2n2x+1=0is1
Commented by mr W last updated on 24/Apr/19
yes sir. one root is x=1, but there  are 2017 further roots which are  not equal to 1. i only treated those  roots. if a=1 (or b=1) my solution  is not valid.
yessir.onerootisx=1,butthereare2017furtherrootswhicharenotequalto1.ionlytreatedthoseroots.ifa=1(orb=1)mysolutionisnotvalid.
Answered by MJS last updated on 24/Apr/19
x^(2n) −2x+1=(x−1)(x^(2n−1) +x^(2n−2) +...+x−1)  ⇒ x^(2n−1) +x^(2n−2) +...+x+1=2  a=1∧b=x  (1^0 +x^0 )+(1^1 +x^1 )+...+(1^(2n−1) +x^(2n−1) )=  =2n+2  in our case 2n=2018 ⇒ 2n+2=2020
x2n2x+1=(x1)(x2n1+x2n2++x1)x2n1+x2n2++x+1=2a=1b=x(10+x0)+(11+x1)++(12n1+x2n1)==2n+2inourcase2n=20182n+2=2020

Leave a Reply

Your email address will not be published. Required fields are marked *