Question Number 179542 by cortano1 last updated on 30/Oct/22
$$\:\:\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{play}\:\mathrm{a}\:\mathrm{game}\:\mathrm{in}\:\mathrm{which}\:\mathrm{they} \\ $$$$\:\:\mathrm{alternately}\:\mathrm{toss}\:\mathrm{a}\:\mathrm{pair}\:\mathrm{of}\:\mathrm{dice}.\:\mathrm{The} \\ $$$$\:\:\mathrm{one}\:\mathrm{who}\:\mathrm{is}\:\mathrm{first}\:\mathrm{to}\:\mathrm{get}\:\mathrm{a}\:\mathrm{total}\:\mathrm{of}\:\mathrm{7}\:\mathrm{wins} \\ $$$$\:\:\mathrm{the}\:\mathrm{game}\:.\:\mathrm{Find}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{the}\:\mathrm{one} \\ $$$$\:\:\mathrm{who}\:\mathrm{tosses}\:\mathrm{second}\:\mathrm{will}\:\mathrm{win}\:\mathrm{the}\:\mathrm{game} \\ $$$$ \\ $$
Answered by Frix last updated on 30/Oct/22
$$\mathrm{the}\:\mathrm{probability}\:\mathrm{to}\:\mathrm{get}\:\mathrm{7}\:\mathrm{with}\:\mathrm{2}\:\mathrm{dices}\:\mathrm{is}\:\frac{\mathrm{1}}{\mathrm{6}} \\ $$$$\Rightarrow \\ $$$${P}\left(\mathrm{1}^{\mathrm{st}} \:\mathrm{player}\:\mathrm{has}\:\mathrm{no}\:\mathrm{7}\right)=\frac{\mathrm{5}}{\mathrm{6}} \\ $$$${P}\left(\mathrm{2}^{\mathrm{nd}} \:\mathrm{player}\:\mathrm{has}\:\mathrm{7}\right)=\frac{\mathrm{1}}{\mathrm{6}} \\ $$$${P}\left(\mathrm{2}^{\mathrm{nd}} \:\mathrm{player}\:\mathrm{wins}\:\mathrm{in}\:\mathrm{1}^{\mathrm{st}} \:\mathrm{round}\right)=\frac{\mathrm{5}}{\mathrm{36}} \\ $$$$ \\ $$$${P}_{\mathrm{1}} ={P}\left(\mathrm{1}^{\mathrm{st}} \:\mathrm{player}\:\mathrm{wins}\:\mathrm{in}\:{n}^{\mathrm{th}} \:\mathrm{round}\right)=\frac{\mathrm{1}}{\mathrm{6}}\left(\frac{\mathrm{5}}{\mathrm{6}}\right)^{\mathrm{2}{n}−\mathrm{2}} \\ $$$${P}_{\mathrm{2}} ={P}\left(\mathrm{2}^{\mathrm{nd}} \:\mathrm{player}\:\mathrm{wins}\:\mathrm{in}\:{n}^{\mathrm{th}} \:\mathrm{round}\right)=\frac{\mathrm{1}}{\mathrm{6}}\left(\frac{\mathrm{5}}{\mathrm{6}}\right)^{\mathrm{2}{n}−\mathrm{1}} \\ $$