Menu Close

a-b-1-b-1-i-b-1-b-a-2-ii-Solve-simultaneously-for-a-and-b-




Question Number 36221 by ajfour last updated on 30/May/18
a(b+(1/b))=−1             ....(i)  b−(1/b)=a^2                      ....(ii)  Solve simultaneously for a, and b.
a(b+1b)=1.(i)b1b=a2.(ii)Solvesimultaneouslyfora,andb.
Commented by behi83417@gmail.com last updated on 30/May/18
a^2 (b^2 +b^(−2) +2)=1⇒(b−b^(−1) )(b^2 +b^(−2) +2)=1  b^3 +b^(−1) +2b−b−b^(−3) −2b^(−1) =1  b^3 +b−b^(−1) −b^(−3) =1⇒b^6 +b^4 −b^2 −1=b^3   ⇒b^6 +b^4 −b^3 −b^2 −1=0....
a2(b2+b2+2)=1(bb1)(b2+b2+2)=1b3+b1+2bbb32b1=1b3+bb1b3=1b6+b4b21=b3b6+b4b3b21=0.
Answered by Rasheed.Sindhi last updated on 30/May/18
a(b+(1/b))=−1             ....(i)  b−(1/b)=a^2                      ....(ii)  (i)⇒b+(1/b)=−1/a           (b+(1/b))^2 =(−1/a)^2         ⇒b^2 +(1/b^2 )=(1/a^2 )−2..........(iii)  (ii)⇒(b−(1/b))^2 =(a^2 )^2          ⇒b^2 +(1/b^2 )=a^4 +2............(iv)  (iii)&(iv): a^4 +2=(1/a^2 )−2                         a^6 +4a^2 −1=0  (i)⇒a(b+(1/b))^2 =(1/a^2 ) ...........(v)           (ii)×(v):     (b−(1/b))(b+(1/b))^2 =1  (b^2 −(1/b^2 ))(b+(1/b))=1  b^3 −(1/b^3 )+b−(1/b)=1  (b−(1/b))^3 +4(b−(1/b))=1  Continue
a(b+1b)=1.(i)b1b=a2.(ii)(i)b+1b=1/a(b+1b)2=(1/a)2b2+1b2=1a22.(iii)(ii)(b1b)2=(a2)2b2+1b2=a4+2(iv)(iii)&(iv):a4+2=1a22a6+4a21=0(i)a(b+1b)2=1a2..(v)(ii)×(v):(b1b)(b+1b)2=1(b21b2)(b+1b)=1b31b3+b1b=1(b1b)3+4(b1b)=1Continue
Commented by MJS last updated on 30/May/18
a^6 +4a^2 −1=0  a=(√t)  t^3 +4t−1=0  solution almost the same as of the former  problem (w^3 +4w+1=0)    t=((−(q/2)+(√((p^3 /(27))+(q^2 /4)))))^(1/3) +((−(q/2)−(√((p^3 /(27))+(q^2 /4)))))^(1/3) =  =(((1/2)+((√(849))/(18))))^(1/3) +(((1/2)−((√(849))/(18))))^(1/3)
a6+4a21=0a=tt3+4t1=0solutionalmostthesameasoftheformerproblem(w3+4w+1=0)t=q2+p327+q243+q2p327+q243==12+849183+12849183
Commented by ajfour last updated on 30/May/18
thank you sir!
thankyousir!
Answered by tanmay.chaudhury50@gmail.com last updated on 30/May/18
a^2 (b^2 +2+(1/b^2 ))=1  (b−(1/b))(b^2 +2+(1/b^2 ))=1  (((b^2 −1)/b))(((b^4 +2b^2 +1)/b^2 ))=1  b^6 +2b^4 +b^2 −b^4 −2b^2 −1=b^3   b^6 +b^4 −b^3 −b^2 −1=0  b^3 +b−1−(1/b)−(1/b^3 )=0  (b^3 −(1/b^3 ))+(b−(1/b))−1=0  b−(1/b)=k  (b−(1/b))^3 =k^3   b^3 −3b^2 .(1/b)+3b.(1/b^2 )−(1/b^3 )=k^3   b^3 −(1/b^3 )−3(b−(1/b))=k^3   so b^3 −(1/b^3 )=k^3 +3k  so eauation is  k^3 +3k+k−1=0  k^3 +4k−1=0  k=(z/n)  ((z/n))^3 +4((z/n))−1=0  z^3 +4zn^2 −n^3 =0  cos3θ=4cos^3 θ−3cosθ  cos^3 θ−(1/4)cos3θ−(3/4)cosθ=0
a2(b2+2+1b2)=1(b1b)(b2+2+1b2)=1(b21b)(b4+2b2+1b2)=1b6+2b4+b2b42b21=b3b6+b4b3b21=0b3+b11b1b3=0(b31b3)+(b1b)1=0b1b=k(b1b)3=k3b33b2.1b+3b.1b21b3=k3b31b33(b1b)=k3sob31b3=k3+3ksoeauationisk3+3k+k1=0k3+4k1=0k=zn(zn)3+4(zn)1=0z3+4zn2n3=0cos3θ=4cos3θ3cosθcos3θ14cos3θ34cosθ=0
Commented by tanmay.chaudhury50@gmail.com last updated on 30/May/18
Commented by tanmay.chaudhury50@gmail.com last updated on 30/May/18

Leave a Reply

Your email address will not be published. Required fields are marked *